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application of VOI techniques, as they now stand, to information
systems is prohibitively complex and rests on implausible assump-
tions. The aim of the present work is to devise modifications of
standard VOI techniques which make them simple enough and realisti¢
enough to apply to information system design, while retaining a
basic reference to the impact of information on decisions.

(1) Explicit reference to all the information in a data base can
be omitted from a VOI analysis if acts are modeled as events
(Brown, 1975). Assessment heuristics are presented which facili-
tate modeling acts as events in this (or any other) context.
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SUMMARY

In work reported here, Decision Science Consortium, Inc. (DSC)

has examined the application of the decision analytic concept

of value of information to the design of information systems.

Automated data base systems play an increasingly prominent role in

a variety of areas - including Command, Control, Communications,

and Intelligence (C 3I), Indications and Warning (I & W), an4

business management. However, a basic problem of data base

design has not been solved: what information should be included

in the system, and what subset of that information should be

presented to a user, so as to best achieve the objectives of the

relevant organization? A common characteristic of systems in

current use is that they often provide vast quantities of partially

relevant data, while failing to identify the information which the

decision maker actually needs to solve his problem.

Current evaluation techniques for information systems appear to

bypass this problem altogether. Evaluation in terms of data-

processing parameters, like channel capacity or memory size,

ignores the ultimate objectives of the system and seems to assume,

simply, that more information is better. Direct assessment of

information quality, in terms of such attributes as relevance and

accuracy, fails to ensure that the actual impact of information on

decisions (hence, on ultimate objectives) is considered. Multi-

attribute utility models similarly have not explicitly required

consideration of how information is used in decision making.

The concept of Value of Information (VOI) implies that information

has value to the extent that it can alter decision and improve

payoffs. However, the application of VOI techniques, as they

now stand, to information systems is prohibitively complex. These

techniques presuppose a highly structured decision problem, in

which information, the uncertainties to which it pertains, and

ii
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the options available to the decision maker are all specified
in detail. Moreover, they assume that the decision maker will

behave optimally in the light of the information he receives.
Complex, multipurpose information systems, on the other hand, are
expected to operate in a variety of environments, some of which
cannot be predicted in advance. And, they must serve users who
cannot always conform to established normative ideals.

The aim of the present work is to devise modifications of standard
VOI techniques which make them simple enough and realistic enough

to apply to informaticn system design, while retaining a basic
reference to the impact of information on decisions. In doing so,
we proceed by steps of (roughly) increasing simplification:

(1) Explicit reference to all the information in a data base can
be omitted from a VOI analysis if acts are modeled as events
(Brown, 1975). Assessment heuristics are presented which facilitate
modeling acts as events in this (or any other) context. By means
of these heuristics, a system designer can examine tradeoffs

between the information value of a system and its usability.

(2) The same heuristics allow the designer to accommodate non-
optimal uses of information and to evaluate decision aids which

support inferential and decision making processes.

(3) The manner in which information affects judgments concerning
critical events need not be explicitly modeled. It is shown that
modeling acts as events may reduce the cost, in terms of credibility,
of omitting this part of a VOI analysis. A convenient form of
assessment, when critical events are not modeled, is in terms of
the expected cost of errors (or opportunity loss). Tha application
of this notion when acts are modeled as events, however, raises
special difficulties, which are dealt with.

i iii



(4) If certain assumptions are acceptable, the options facing a
decision maker need not be specified in a VOI analysis. Information

may be evaluated in terms of the overall probability that it will

cause a 4ecision maker to switch from an otherwise preferred option,

and the expected swing in utility if he does so.

(5) The information value and usability of a system can be dis-
tinguished, within this evaluation technique, by decomposing the

probability of switching options. The result is a multiattribute

utility model which has well-defined attributes and a well-motivated

rule for combining them, and which refers explicitly to the impact

of information on decisions. This approach extendd, once again,

to the modeling of non-optimal behavior and to the evaluation of

inference and decision aids.

We turn next to the application of these concepts to the interaction

with a system by a particular user. The objective is to program

into the data base "intelligent" real-time information selection

for the user. We outline an interactive procedure which focuses

the user's attention on the potential decisional impact of infor-
mation and which guides him to the data categories of most per-

tinence. Again, a variety of levels of simplification are explored.

Procedures for mapping critical events, about which the user is

uncertain, onto data categories are also examined.

Ii
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1.0 INTRODUCTION

1.1 The Need for Goal-oriented Information System Design

There is a curious paradox in the current status of automated
information systems - whether in Command, Control, Communlcations,

and Intelligence (C31), Indications and Warning (I & W), or
business management. On the one hand, as Zani (1979) notes

regarding management information systems (MIS), they "have not
really been designed at all. They have been spun off as

by-products of automating or improving existing systems...." It

might be supposed that such a bottom-up approach would result in a
fairly painless infiltration of information systems into

pre-existing organizations. Yet, this has been far from the case.

In many instances, the introduction of systems in this way has

produced controversy and failed to satisfy initial expectations

(e.g., Miller, 1980; Beard, 19771 Swanson, 1974).

A consensus seems to be emerging that a more active design procesn

is required if information systems are to be optimally exploited:

o Andriole (1980) argues that the focus in C3 on "timely,
rapid, survivable, and secure" delivery of information
reflects lack of appreciation for what is done with the
information after it is delivered, i.e., how commanders
cognitively process it in order to make decisions.

o Gorry and Morton (1971) describe how management
information systems have focused on techniques
for automating routine operations rather than
support of problem-solving and strategic planning.

o Mintzberg (19_) argues that management information
systems tend either to flood users with data or else
summarize and average to the point of blandness. There is
no intelligent selection of the details needed for
decision-making.
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* Shlaim (1976) stresses that analysis and interpretation
have lagged behind the sheer production of data in the
area of monitoring and warning.

* Miller (1980) cites severe organizational and
institutional resistance to the implementation of command
and control projects.

As a result of such considerations, the Deputy Assistant Secretary

of Defense has recently urged that Command and Control systems be
designed and evaluated explicitly in terms of their contribution to
mission success (Von Trees, 1980). Zani (1979) similarly concludes

that MIS design should begin with a fundamental analysis of manage-
ment decision functions. Finally, Daly and Andriole (1979) stress

that Indications and Warning system design must refer to the purposes
for which warnings are sought.

1.2 The Information System Evaluation Problem

Unfortunately, the implementation of a goal-oriented design

process for information systems runs into techical problems.
Systems for the management and display of information should help
decision makers achieve their objectives ky making better
decisions. In contrast to transportation systems or weapon
systems, information systems do not (necessarily) change the world
in which action occurs, but have their principle impact on the
cognitive processes that lead to action. Yet a conspicuous gap in
the technology of design is an understanding of the relationship
between information and decisions. As a result, evaluation of

information systems has typically omitted reference to the
decisions the systems are presumably designed to support.

In general, a viable technique for assessing systems must be both
practical and relevant. It must involve attributes which are

realistically measurable and which at the same time reflect

1-2!



a system's potential contribution to uitimate objectives. In the

case of information systems, practicality is frequently achieved
by measures which ignore this distinctive character of

information, and whose relevance is therefore doubtful.

1.3 The Concept of Value of Information and Current Technisues

In the work reported here we take the opposite tack. We start
with an analysis which focuses on the decisional impact of

information, although its shortcomings from the point of view of
practicability are rather severe. We then explore ways in which
the analysis can be simplified and modified in order to arrive at

an operative evaluation technique for the data base content of
information systems.

The starting point suggested by this strategy is the decision
analytic concept of Value of Information (VOI). The essence of
the VOI concept is that information has value only to the extent
that it can alter decisions, with a resultant change in expected
payoffs. As we have implied, the direct application of current
VOI techniques presents problems, since even the evaluation of a

single data item in a single scenario may require an unmanageable
number of assessments (Raiffa and Schlaifer, 1961). Quite apart

from practicality, however, there are more troubling and
fundamental objections to the straightforward use of VOI as it now
stands.

VOI applies to the valv'e of performing an experiment. The
experiment is expected to reduce uncertainty concerning in event
relevant to the decision maker's choice of action. In crder to
assess VOI, therefore, one must have specified the experiment, the
uncertainty to be reduced, the potential bearing of the experiment

on the uncertainty, and the choices which may be affected. In
other words, the problem must be highly structured. A second
assumption is that the decision maker's choices subsequent to

1-3



receipt of the information will be rationally predictable on the
basis of that structure.

These demands are not typically satisfied:

* Information systems will be expected to operate in a very
large and not very well specified set of scenarios. C3

systems, for example, must deal with contingencies

determined in part by our adversaries. Options and major
uncertainties may not be known in advance.

* Users may diverge from established normative theories in

the manner in which they handle information. Political
factors quite unrelated to organizational goals often

distort the flow of information in organizations (Huber,
1980a, 1980b). Limitations of time, cognitive capacity,
and knowledge prevent individuals from making the
normatively correct use of information presupposed by VOI.

A corollary of the fact that users do not always behave optimally

is that information systems may help them to behave more optimally.
Such systems may in fact provide assistance in structuring the
problem, i.e., in generating options and identifying important
parameters; as well as in drawing inferences and prioritizing
actions. Traditional VOI techniques do not apply directly to the

evaluation of this type of information.

A common element in these considerations has been the question of

appropriate structure. The structure presupposed by traditional
VOI may be unknown in advance, disregarded by the decision maker

at the time of action, or supplied to him at that time by the

information system. This common element is our starting point.

Generalizations of VOI which handle it might produce at the

same time a significant simplification of the required assessments

1-4



and computations. The objective of the research reported here is
to pursue that possibility, in order to discover practicable
evaluation techniques for information sysitems which nonetheless
retain the VOI concept with its explicit reference to decisions.

1.4 Preliminary Distinctions

It will be useful at this point to set boundaries on our present

concerns and to mark some distinctions which will figure in the

application of VOI to information systems.

(1) First, the items to be evaluated are the content of the

information system (and to a lesser degree the manner in which

information items are displayed), in contrast to the hardware and

software configuration.

(2) A truly general evaluation method, however, will allow these
items to be either experiments or facts. An experiment is an

observation which has a number of possible outcomes. For example,
the application of VOI to a forecasting model involves the issue
of what indicators to include, where each indicator is a variable

* Iwhich can assume a range of levels. Experiments play a role in

other contexts as well--e.g., in command and control, the value of
different kinds of information about the location and identity of
hostile platforms in the immediate vicinity.

Facts, on the other hand, are constants and are (in principle)

knowable in advance of their selection for use in a decision
context. The particular outcome of a previously performed
experiment is a fact. Facts may concern past events (e.g.,
international crises), but also include theoretical and historical
generalizations.

1-5



"Some data base systems consist exclusively of factsl an example

is Executive Aids for Crisis Management (Mahoney, at al., 1978;

Spector, at al., 1978) which consists of historical facts
about international crises organized according to actions,

objectives, problems, and other descriptors. More usually,

there is a mix of facts and experiments. The designer of a combat

center, may decide to include within the data base continuously
"updated information on threat locations, as well as standing

intelligence on threat capabilities.

Many facts to be considered for inclusion in an information

system will be initially unknown to the system designers (e.g.,
the specifics of threat capabilities). The decision of whether

or not to include these facts in the data base must, therefore,

involve two phases: first, whether to expend the resources
required to make them available; second, whether or not to

include the output of the first phase (known facts) in the

i |data base system. "Unknown facts" may, in the initial phase,

either be characterized in terms of a variable the actual level

of which is uncertain (e.g., weapon range)--or else by means of

a more generic category (e.g., "the events leading up to the
Suez Crisis"). In the former case, unknown facts are treated

analogously to experiments.

In general, experiments or facts may be considered one by one

foA exclusion or inclusion in a data base--or else they may be

grouped into larger categories. At the limit, the entire

contents of a proposed data base can be evaluated as a single

unit. Grouping of items'will be necessary when the items

interact in their impact on decisions--as, for example,

when one item cannot be interpreted properly in the absence

of another.

(3) Another important distinction among information items

concerns the level of analysis which they represent. Certain

1-6



items may provide higher-order information regarding the
implications of other data for judgment and/or action. For
example, in EWAMS (IPPRC, 19791 DOI, 1978) the number of

bilateral interactions of a given type between two countries

serves as the basis for an inference regarding the likelihood
of a crisis. In this case, both levels of analysis are
available to the user: datum and inference.

As another example, in submarine command and control raw bearing
measurements are used to estimate the range of a target. Target

range may in turn figure (together with facts about adversary
capabilities) in still higher-order inferences concerning the

probability of being within threat weapon range (Cohen and Brown,

1980). A still higher-order inference might regard the action

(e.g., fire now or continue to approach) which maximizes expected
utility. An important issue in the design of such a system is the

selection of levels to be presented: To what degree does the user
* require evidence as well as conclusions? To what degree will the

presentation of conclusions mark an improvement over the
inferences the user would have drawn on his own from the evidence?

(4) A different kind of distinction concerns the time at which
information is evaluated. We consider that value of information

can be computed and information choices made at either (or both)
of two stages: system design or system use. We begin by assuming

a hypothetical "Universal Data Base" containing all information
items which are of any relevance whatsoever. (This is a rather

loosely defined and open-ended set, since it contains all possible
inferences from its members.) The first stage of selection

* (Figure 1-1) requires the selection of a subset of the Universal
Data Base to serve as the "Actual Data Base" for a given system.
This selection is performed by the designers of the system with

its intended users in mind. The second stage of selection
* Dproduces a subset of the Actual Data Base to serve as a "Virtual

1-7
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Figure 1-1

Levels of Information Selection
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Data-Base" tailored to the requirements of a current decision in a
specific scenario (Pigure 1-1). This stage directly involves a

user of the system (although provision for such specification is a

task for the system designer).

Information evaluation techniques may be applied at either

(or both) of these stages. We refer to the interaction of the
designer with such a technique as the "designer dialogue", and the

interaction of the user as the "user dialogue". Somewhat
different constraints affect choices at these two levels. When

the user of a C2 system selects a virtual data base (e.g., the
contents of a display screen or of core memory), his major

limitations are likely to be time and cognitive capacity. Other
considerations might include the number of display surfaces and
the personnel available to record and analyze the information

selected.

The system designer must consider these same factors in a general

way, especially if a user-controlled stage of selection is not

provided for. But additional factors enter into the designer
dialogue, e.g., limits on the size of long-term storage devices, and

the costs for research and development.

(5) A final demarcation of our interest concerns how information

items are to be evaluated. Information has many effects: it may
simply satisfy curiosity, and it may increase confidence in one's

previous decisions or in those of someone else. These effects are

certainly not to be ignored. But our central focus here, as

implied by our interest in VOI, will be on information's
decisional impact. The, measures which we develop can, we assume,

be combined subsequently with other aspects of value, within the

context of a general multi-attribute utility model.

1-9



1.5 Outline of Report

Chapter Two examines information system evaluation techniques in
current practice. It consists of three parts. In the first, we
look at techniques which seem practicable but which do not
explicitly refer to decision making. In the second, we examine
the VOI concept and shortcomings of current VOI techniques. And,
in the third, we describe some recent modifications of VOl which
hold promise for the application to information systems. These
modifications were originally designed to handle non-optimal or
not fully modeled decision making (Brown, 1975) and the evaluation
of decision analysis (Brown and Watson, 1975).

* Chapter Three reports the major results of the study. It turns

out that the modifications of VOI mentioned above make a

significant contribution to the problem of applying VOl to
unspecified scenarios and, in general, to the goal of a simple,

• practical evaluation technique in system design. Some additional
modifications are suggested to further simplify the technique and
reduce the degree of specification required. These modifications
in turn are shown to contribute to the methodology for evaluating
decision analysis and for representing non-optimal behavior.

Chapter Four applies the foregoing results to the on-line

selection of information by system users. A considerable increaseI, in system flexibility and in accommodation to individual
differences can be achieved by applying VOI concepts to the
interaction between user and system in a particular decision
problem, rather than merely at the system design stage.

Finally, an Appendix explores some possible applications of fuzzy
set theory to the problem of information evaluation.

1-10
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2.0 BACKGROUND RESEARCH

Two purposes motivate the development of an evaluation method-

ology applicable to information systems. Such a methodology
can help set priorities for the allocation of resources among

* diverse options - e.g., command and control, weapons, and
force levels. On the other hand, it can lead to the improvement

of information system design for a given expenditure of re-
sources. In both cases, the role of an evaluation technique is

in the measurement of a proposed system's contribution to
ultimate objectives, or utility.

Currently practiced techniques differ in the features of infor-

* mation systems which serve as indicants of ultimate value. As
a consequence, they differ (a) in the clarity of the relationship

between such features and utility, and (b) in the number and

difficulty of the required assessments. A brief survey of avail-

able techniques will show that the objectives of validity and
practicability tend to conflict, and that it is difficult to
achieve an acceptable level on both at once.

2.1 Non-Decision Oriented Approaches

In this section we will briefly survey four approaches to in-

formation system evaluation. None of these approaches involves

explicit reference to decisions. They differ according to the

avowed criteria of evaluation:

e Data-processing parameters

Information quality
e Multi-attribute utility
* User information selection

2-1



2.1.1 Data-processing parameters. In the area of C31, com-

munications technology has traditionally taken the lead. Evalu-

ation of C31 systems has tended to focus on properties of in-

formation transmission and storage. The availability of well-
developed theories in this area has encouraged the use of measures
like channel capacity, connectivity, memory size, and computation
speed. In some methodologies (e.g., TRI-TAC, described in

Miller, 1980), these measures are combined by a weighting scheme

into a single index of communication performance.

Unfortunately, the measure of worth deriving from this approach

makes no reference to the real objective of the system:, viz.,

mission accomplishment. To assume that communication performance

reflects such an objective in a straightforward, or even
monotonic, fashion is to accept on faith that "more information

is better". This is to ignore human cognitive and organizational

constraints which dictate a need for information filtering and

decision aiding (Andriole, 1980).

Moreover, it is hard to see how meaningful weights could be

assigned, and an appropriate balance struck, between such com-

peting claims as memory size and computation speed without reference
to the uses of the system. For example, a system designed to

calculate the trajectory of an approaching weapon would require

a different tradeoff on these dimensions than one designed to

evaluate the likelihood of a political coup in Iraq. "Communi-

cationm performance" itself cannot be assessed in abstraction

from a mission.

Measures of this sort may prove useful (if appropriately linked

to ultimate objectives) for the evaluation of alternative

hardware or software designs. But they do not apply at all to

the selection of the content of the information to be provided.

For this reason, it does not seem desireable to construct an
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evaluation technique with these measures as a basis. It has

been suggested (Alberts, 1980) that an evaluation technique

might start with data-processing parameters, but employ "link-

age models" which describe the relationship between these para-

meters and higher-level indicants of system utility. Such a

technique, while acknowledging the importance of ultimate util-

ity, would have to ignore some of the most critical sources of

variation among proposed systems--i.e., the nature of the infor-

mation presented.

The optimal exploitation of more effective weapons and more

highly mobile forces requires C31 systems capable of supporting

rapid, accurate decision making. The advantage in an engagement

may belong to the side which can saturate the command and control

K capacity of an adversary. Yet current C I systems tend to present

O large quantities of data about the environment, adversaries, own

unit, and weapons, in relatively raw undigested form (cf., Cohen

and Brown, 1980). An exclusive stress on communications

properties, by deflectinq attention from what is done with

the information communicated, is unlikely to lead to dramatic

improvement.

2.1.2 Information quality. A second approach evaluates infor-

mation systems ata higher level of abstraction and has been

particularly prominent in the literature on Management Infor-

mation Systems (MIS). Information content and information de-

livery are characterized in terms of such dimensions as accuracy,

relevance, timeliness, clarity, and readability (Swanson, 1974;

Gallagher, 1974). Direct subjective assessments of these

properties may be obtained in a laboratory context or in large-

scale prototype testing. Again, measures on these dimensions

(or others defined in terms of them) may be combined by a weighting

scheme into a single index of worth.

On the face of it, these properties seem to bear a close relation

to the contribution of a system to ultimate objectives. The

notion of precision, for example, is defined as the proportion
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of the supplied information items which are deemed relevant

by the user. Thus, weight is given to the need for an intel-
ligent selection of the information to be provided. An adequate
system must achieve a suitable balance between precision and

completeness, defined as the proportion of relevant items
which are supplied (cf., Cleverdon, 1962; Smith, 1972).

Similarly, requirements of usability are acknowledged in such

dimensions as clarity and readability. Again, successful systems
I must strike a balance between usability and informativeness

in the more abstract sense, represented by relevance, accuracy,
and timeliness. A distinction of this sort between two classes
of properties has become widely accepted (Herner and Snapper,

0 1978; Larcker and Lessig, 1980). For example, Smith (1972)
proposed two sets of criteria, one dealing with efficiency

from the operator viewpoint and one with effectiveness
from the user viewpoint. In his efficiency set, Smith listed

0 a variety of attributes, reflecting both cognitive and organ-

izational factors: orientation toward a single organization
(or, presumably, body of users), functional and technical inte-
gration with the target organization, uniqueness (or lack of

0 overlap with other systems), flexibility, efficacy of processing

procedures and programs, and efficacy of the man/machine inter-

face. In his set of effectiveness attributes, Smith includes

the 'following: relevance, accuracy, timeliness, sufficiency,
0 concisenses, consistency of the data source, user confidence,

and news or discovery value of messages.

A closer examination of this approach reveals, however, that the
9 relation of criteria to utility has not been sufficiently

clarified. Since the goal is to define the "perceived" value
of information, justification of attributes which were initially

posited a priori has been sought in studies of subjective judg-

ments. For example, factor analyses of experimentally elicited
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responses suggests that evaluations can be roughly organized
in accordance with the proposed criteria (e.g., Zmud, 19781
Larcker and Lessig, 1980). Unfortunately, however, there is
reason to suppose that subjective judgments tend to be guided
by considerations other than ultimate utility.

Often a respondent is simply invited to indicate which data
elements or information are "relevant" to him. In this case,

no direction is given as to what the information should be
relevant for. Data which have no effect on decision making (be-

cause, for example, they are already known to the user) might
be counted "relevant" if they are related to the topic of concern.

In some studies the respondent may be asked to check only those
,* elements which are relevant in that they are likely to be "used".

i9 On occasion, the instructions request the respondent to check
F off items that are to be "used for decision making." The latter

approach is in fact seldom employed. But even when it is used,
• |critical ambiquities as to what is being assessed remain un-

resolved. Information may be used in decision making and yet

have a very low probability of changing the decision and affecting
utility. Moreover, no consideration is given to the relative

* importance of the decisions which might be affected.

Little attention has been paid within this approach to rules for
weighting and combining attributes into a single index of utility

P (see Keeney and Raiffa, 1976). Factor analytic methods for
extracting subjective dimensions from evaluative judgments
(Zmud, 19781 tarcker and Lessig, 1980) implicitly inpute ortho-

gonality to the extracted dimensions. Yet in terms of utility,

* additive relationships do not always seem plausible. For
example, a decrease in usability cannot always be fully com-

pensated by an increase in informativeness (e.g., accuracy).

If usability falls to zero (e.g., in the case of an illegible

display), utility is presumably zero regardless of accuracy.
This suggests a multiplicative relationship. Thus, while greater
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accuracy may be achievable only by sacrificing usability, in
terms of utility the more of one, the more valuable is a given'
level of the other. A similar argument applies to timeliness
and accuracy. More time may buy more accuracy. But a system
that never produces information on time is worthless, regardless
of its accuracy. If orthogonality is to be imputed to these
dimensions on the basis of factor analytic results, we can
only conclude (once again) that respondents were not assessing
utility.

The problems with "relevance" noted above spill over, of course,
to derived measures like precision and completeness, which are
defined in terms of relevance. But these measures raise funda-

mental questions about system evaluation in their own right.
Completeness, as Cooper (1976) notes, places heavy stress on the
presumed cost of "unexamined documents", i.e., relevant information
which is not supplied by the system. But it is far from clear
that this is a well-defined, quantifiable set except in very
special circumstances. To be sure, in a detection problem (e.g.,
signalling the presence of enemy platforms in an area) misses
are quantifiable in principle and are quite relevant to system
evaluation. But in general it is not clear what the set of "all I
facts" on a given topic might be, nor why this set should be
considered in evaluating the utility of the facts that are supplied.

As Cooper notes, information never received by the user cannot
affect his decisions. (It may, but need not, affect our assess-
ments of likelihoods and utilities for the outcomes of his

decisions.)

* In short, it is neither feasible nor justified to automatically
penalize a system when it does not present a "relevant" item
of information. The more direct and valid approach is to compare,
in terms of utility, systems which supply a particular type
or item of information with those which do not.
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An important result of treating information selection as if itwere a detection problem is to slight the value of inference

and dpcision aids. Such aids are not easily reconciled with
the paradigm of a fixed set of facts from which data is to be
selected. On the contrary, they may assist the user in providing
a structure for the problem within which such facts can be
interpreted. In Management Information Systems, as in C3 1,
the emphasis so far has been on information systems which per-
form routine repetitive tasks, at the level of "operational
control," rather than systems which can support problem-definition
and problem-solving at the level of "strategic planning" (Gorry
and Morton, 1971), Major advances in the latter area will come
not from more "complete" coverage of data, but from enhanced

information processing ability.

2.1.3 Multi-attribute utility. A considerable body of techniques
has been developed (e.g., Keeney and Raiffa, 1976) for measuring
utility wher competing alternatives vary on numerous relevant
dimensions. Multi-attribute utility (MAU) models specify how
measurable properties of a system are related to overall system
utility by means of mediating attributes and conditioning vari-
ables. Development of such a model consists of several stages.
Overall utility is decomposed into subfactors, and these are
further decomposed down to the level of measurable properties.
Functions are assessed on the measurable properties to express
their contribution to factors at the next higher level. Com-

bination rules are employed to show how the value of a factor
is determined by the subfactors subordinate to it, and importance

weights are assigned to ,he subfactors.

MAU models provide a single index of utility for complex systems.
3They have been applied to such C I components as the single

channel ground and airborne radio system (Chinnis, et al., 1975).
"Value diagrams," which may be regarded as variants of MAU
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models, have been applied to the evaluation of alternative

intelligence collection platforms in Barclay, Brown, et al.,
1977. In this application, the value of a particular platform
is expressed in terms of its contribution within different

collection modes (photographic, radar, etc.), for different
types of target, for different types of threat, in different
geographical regions.

MAU models, in contrast to the data processing and information

quality approaches, give explicit attention to utility and to the

form in which attributes combine. The objective is to facilitate

evaluation by breaking it down into simpler components. None-
theless, there has been little or no attention to the particular
nature of information systems. The assessment of information

value is not decomposed in such a way as to make explicit reference
to its impact on decisions. The validity of the assessments

obtained thus depends on the assumption that the assessor takes
this impact implicitly into account.

For example, in the evaluation of intelligence platforms, im-

portance weights must be assigned to different collection modes
for a given target type, threat type, and geographic region.
There is no guarantee that in assigning these weights, proper

regard is paid to the decisions that would be affected. Yet

information has value in this context chiefly to the extent that

it can alter decisions.

In sum, although the MAU methodology is suitable for application
to complex systems in general, there is as yet no adequate
specification of the criteria or attributes which are particularly

appropriate for information systems. In light of the pre-

viously noted problems with such measures as relevance, com-
pleteness, and precision, specifying such attributes promises
to be a non-trivial task.
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2.1.4 oser information selection. A final-approach is to

rely not on assessments, but on behavior. Information selection
decisions may be observed as they are actually made. Analysis

of such decisions, which are assumed to reflect user needs,
can guide system design (cf., Davis, 1974). In the adaptive

"information selection (AIS) method developed by Perceptronics
(Samet, et al., 1976, 1977), a model of the information

choices by individuals or organizations is used to determine

which items will be routed where. The model is capable of
adapting to changing preferences for information as circumstances
alter.

This approach is ideally suited for the design of systems in-
tended to automate and replace existing procedures. AIS is
likely to channel information in a way which is compatible with
the capacities and preferences of its users. Nonetheless, for
this very reason, it has important limitations. Perfect mirroring
of current procedures in incompatible with the achievement of
certain kinds of improvement. AIS may in fact perform better
than the users which it models when their errors can be accounted
for as random noise. But it cannot correct systematic biases,
fallacies in reasoning, or mistaken assumptions. Moreover,
it cannot lead to the provision of informtion - e.g., decision
aids - which significantly enlarge present capabilities.

Behavioral data have a status somewhat comparable to holistic
subjective assessments of informa&tion value. Intuitions of
users concerning their needs are a valuable source of insight

for the system designer. However, these data need to be supple-
mented by a more analytical consideration of what the data are
needed for, i.e., what their impact is expected to be on sub-
sequent decisions.

2
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2.2 Value of Information

The standard decision analytic concept of the value of informa-

tion is well described in most of the basic textbooks (e.g.,

Brown, Kahr, and.Peterson, 19741 Raiffa, 1968), and is pursued

in greater depth and complexity in more advanced work (e.g.,

Raiffa and Schlaifer, 1961). Although information can have

intrinsic value by increasing knowledge, the thrust of VOI

is to evaluate information gathering acts (or "experiments")

in terms of their instrumental impact on subsequent decisions.

(Our notation will be a simplified version of the notation used

in Raiffa and Schlaifer.)

2.2.1 A decision problem. If he is unable to obtain further

information, a decision maker might face a simple decision prob-

lem like the one depicted in Figure 2-1. In this problem, he
must choose between two options, a1 or a 2. One of two events

or states of the world, s or s2, will turn out to be the case.

* Depending on which combination of act and event obtains, he

will experience a utility, u(a,s). In order to decide between

a1 and a 2 , the decision maker assesses utilities for the terminal

node of avery path through the tree. He also assesses probabil-

* ities for each event, P(sI) and P(s 2 ). He can now choose be-

tween a1 and a2 by "averaging out and folding back" the tree.

First, he computes the expected value of each action by taking

the sum of the utilities for that action weighted by the proba-

* bilities:

u*(a) - E u(a,g) - E P(s)u(a,i).

9 The expected value of the decision problem itself is the ex-

pected value of the best alternative:

u* max E u(a,i).
:a a-
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Su•2 u(a 1 1s 2 )

a2J U* (a2) u (a',l a8 2,

u(a 2 ,s 2 )

A Simple Decision Problem
Figure 2-1
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2.2.2 Value of perfect information. It is quite simple to
assess the expected value of perfect information (EVPI) about
S = (a112 ) for this decision maker. In effect, we "flip the
tree," placing the uncertainty node for a before, rather than
after, the decision node. We thus assume the decision maker
has information about a when he makes the decision. Now,
rather than selecting the option with the largest utility
averaged across possible states of the world, he can select
the option with the largest utility within each state of the
world, whatever it turns out to be:

u*(PI) - E8 maxau(a,}).

The expected value of perfect information is simply the value
of the decision with the information less the value of the
decision without it. Clearly,

E maxa U(a,s) > maxa Esu(a,s);

hence,

i ~u* (PI) > u*.

* Thus, the expected value of perfect information is positive or
zero. (Note that this does not imply that the decision maker,
even with perfect information about s, selects the option with
the best outcome. s may not be the only relevant uncertainty,

* in which case u(a,s) is not a realized utility but an expection
over the unmodeled events. Alternatively, u(a,s) may be the
expected value of a probability distribution assessed on utility
u, for each a and s.)

2.2.3 Opportunity loss. Some insight into the dependence of
the value of perfect information on decisions is obtained through
an alternative formulation, in tefts of expected opportunity loss
(EOL). Let us assume that without any further information the

decision maker prefers option a1 (i.e., a1 maximizes E u(a,i)).

2-12
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Now we can compare, for each a, the utility he receives from a1

with the utility he would have received if he acted on perfect
information about s. This difference is referred to as an "op-
portunity loss:"

Z(a 1 ,s) - maxau(a,s) - u(a 1 ps).

It can be shown that the expected value of perfect information
is the same as the expected opportunity loss for a1:

1* Es (a l ,s)

E Ea[max au(api) - u(al,s)]

- EVPI.

* Observe that for values of s in which the already preferred act,
al, is in fact the best choice, max au(a,s) - u(al,s), and there
is no gain in utility from perfect information. Information has
value only if it can change decisions. In effect, the value of
perfect information is the expected cost of errors.

2.2.4 Value of imperfect information. Often a decision maker
is able to obtain information about possible states of the world
which, while not perfect, nonetheless has a bearing on his choice
of action. Let us assume that before choosing between a1 and a2 ,
he has the chance to perform an experiment, el, with possible
outcomes z1 and z2 . The expected value of this experiment can
be assessed by adding an uncertainty node, representing its pos-

sible outcomes, to the decision tree prior to the decision node.
In Figure 2-2, we see that the decision maker can either choose
immediately between a1 and a 2 (after the dummy experiment, e0 )

or else perform e1 first.

A convenient assumption in analyzing value of information is
that utility is a lipnear function of some measure (e.g., money)
of total consequences (Raiffa and Schlaiffer, 1961; Lavalle, 1968).
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Then the utility assessed for each path through the tree can be

expressed as two additive segments:

u(e,z,a,s) - u(as) - c(e),

where c(e) represents the cost of performing the experiment.

(We further assume that c(e) is independent of experimental

outcomes, z.) As a result, we can compute the value of the

experiment •1 (disregarding its cost) and then compare this

value with c(eI), in order to decide whether to purchase it.

To evaluate the experiment el, the decision maker must make

some additional assessments: (a) the probability of receiving

a particular observation from the experiment, P(zlel) and (b)

the probability of states of the world conditional upon these

observations, P(slz,eQ). Usually, the most natural way to ob-

tain these probabilities is to assess P(sleI) and P(zls,e 1 ),

and then to use Bayes' Therom:

P(slz,e 1 ) P(sleI) P(zls,eI)

P(z Ie1)

P(zle 1 ) = 1 P(slel) P(zls,el).

Before performing the experiment, the decision maker can

compute the expected value of each action, a, and a 2, using

the conditional rather than the prior probabilities of s:
I

u*(el,z,a) = E slz,e1u(a,S).

The expected value of the choice between a1 and a2 , after ob-

* serving the information represented by z, is the expected

value of the best alternative:

u*(el'z) " maxaEsIz'euOaf,).
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Finally, the expected value of the decision problem with the

experiment 01 in obtained by taking the expectation with re-
spect to its outcomes:

u*(eI) - EzlemaxaE.Iz eu(a,1).

This is the decision maker's expectation, prior to the exper-

iment, of the utilities to be obtained posterior to the receipt

of information. Hence, this technique is referred to as "pre-

p |posterior analysis."

As in the case of perfect information, the expected value of

imperfect, or "sample" information (EVSI) is the value of the
decision with the information less the value of the decision

without it (disregarding cost):

EVSI - u*(e 1 ) - u*(e 0).

This gives the fair cost of e1. If EVSI exceeds the actual cost,

c(el, then other things being equal, e1 is worth performing.

2.2.5 Non-negativity of information value.

In a sense, imperfect information about s is perfect informa-

tion regarding a component of the uncertainty. Uncertainty

about s, represented by P(s) , is decomposed into uncertainty

about the outcome of the experiment, P(zlel), and uncertainty

about s conditional on those outcomes, P(slz,e1 ). Imperfect

information resolves the former. (Note, however, that uncer-

tainty about s in the communication theory sense (Shannon and

Weaver, 1949) need not be reduced by the occurrence of z.)
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EVSB. like EVPW, is non-negative. The essential point is that

u*(e 1) - zlel maxau*(elh,ca)

SmaxaEzIeu* (elfra)

This simply says that taking the maximum within levels of the
variable z (perfect information about z) is at least Is good
as taking the maximum averaged across levels of z (ignorance

about z). The remaining steps require some additional assump-
tions. We see that

maxaEzjelu*(el,g,a) - maxa~zlelEs1 zelu(a,i)

= maxaEzaslelu(a,i)

, maxaE alelula,i)

since u(a,s) is not a function of z. If we further assume that

P(sleI) 1 P(s), i.e., that performance of the experiment does
not itself alter states of the world,

I
maxaEsIe u(a,i) = max E u(a,s)

a 1l asa

u*(e 0 )

Thus,

u*(e 1 1 _ u*(e 0 ).

2.2.6 Non-decisional impact of information. The standard VOI

analysis does not allow for the fact that the acquisition of in-

formation may, in itself, affect the state of the world. The
most obvious example is, perhaps, the situation where, were others
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to know that one was obtaining the information, they might alter
their otin strategies. This is indeed a pressing concern in sub-

marine command and control, for example, where information about

target location must often be collected without revealing the
presence of one's own ship. Increased accuracy of localization

may lead to counterdetection and loss of advantage (Cohen and

Brown, 1980). Similar tradeoffs may govern decisions as to

the collection of intelligence information in general.

I. H. Lavalle, in his paper, "On Value and Strategic Role of

Information in Semi-Normalized Decisions" (1980), examines this
"strategic non-independence" between information-gathering and

states of the world. Lavalle shows that one may split up the

overall value of the information into the strategic value and

the pure informational value. The strategic value is the dif-
ference in the value of the decision with and without the ac-
quisition of non-used, zero cost information. It may be either

positive or negative. The pure informational value is the dif-
.9 ference in the value of the decision with and without the de-

cisional use of information already acquired. The pure infor-
mational value is thus always non-negative. Lavalle shows that

if the decision maker has constant risk aversion (i.e., if
his utility functions are either linear or exponential in form)

than the overall value of information is simply the sum of

the strategic and the pure informational values.

* It will be an assumption of our approach that, in general, the

utility of information can be additively decomposed into pure

information value and other sources of value. The latter in-

cludes not only Lavalle's strategic value, but other contributions

* of an information source or experiment - including, for example,

enhanced communication within an organization or increased con-

fidence in previously taken decisions. The utility of informa-

tion, in terms of its decisional impact, can then be assessed

* in abstraction from its other sources of value. All con-

tributions to utility can ultimately be combined within an
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overall multiattribute evaluation of an information system.

2.2.7 Conditions of positive value. The conditions under which

imperfect information has positive (pure informational) value can
be illuminated by.a formulation in terms of opportunity loss. We
assume that in the absence of information concerning z, the decision
maker prefers option a1. We can now compute the cost of the errors

caused by not knowing z. That is, we compare for each value of
z, the utility he expects to receive from a1 with the utility
he would have expected had he acted on information about z. The
expected value of imperfect information is the expectation of

this difference with respect to z:

EVSI = u*(e 1 ) - u*(eo,a 1 )

"a E z~l[maxaEslz,elu(a'l) - maxaE u(aE)]

M- Ezle [maxau*(el,zPa) - u*(el,z,a1)].

These equations shows that imperfect information will have posi-
tive expected value if and only if:

9 z and 9 are not independent (EsIz,el Ea). Thus, z has

an impact on the decision maker's judgments about s.

0 Under some outcomes of the experiment, the
best action given knowledgs of z is not the pre-

viously preferred option, so it is possible that

max aU*(elz,a)> u*(elz,a 1 ). In other words, revised

judgments about s will lead to altered decisions.

* The utilities of the previously preferred option and

the option indicated by knowledge of z are different:

i.e., altered decisions affect payoffs.
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2.2.8 Application of VOI to information systems: practicality.
The paradigmatic application of VOI has been to the one-time
acquisition of a discrete item of information for a particular
purpose: for example, a market survey to decide whether or not
to introduce a new product. Even in this kind of application,
standard VOl techniques quickly become unwieldy as the number
of options, states of the world, and experimental outcomes in-
crease. It is not unheard of for decision trees to be con-
structed with tens of thousands of nodes.

Information systems, however, especially in C3 I, do not fit
within the traditional paradigm, either at the design stage or
in use (Figure 1-1). The designer must consider innumerable
items of information for inclusion in the actual data base,
many of which will be required for a multiplicity of purposes
by a variety of users. Moreover, it can be expected that in-
formation items within a system will interact strongly in their
effects on decision making: in many cases, the presence of one
will be useless without the presence of another. As a result,
even in a single instance of system use, more than one
item will tend to be present in the virtual data base (e.g.,
on a video display).

Interaction substantially complicates the problem of system
evaluation. Consider the task of evaluating a data base con-
sisting of n experiments, En a {el,...,en}, for use in only
a single scenario or decision problem. The baseline against
which VOl is calculated will depend on the purpose of the eval-
uation. If the issue is a procurement choice among an informa-
tion system and other options, we will probably be interested in:

EVSI(En) - u*(En) - u*(eo).

That is, we will compare the decision problem with and without
* the entire data base. But if the issue involves adjustments

to an existing sytem, e.g., the expansion of En_1 by the
addition of experiment en, we will want:
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EVSI (anIEn u*(En) - (E

i.e., we will compare the two data bases directly. Now if
the ei are utility independent, the budget planner or system

designer can compute the expected value of the decision
separately for each information item, assuming no other items
to be present, and then compute the value of the decision with
the entire data base by summing over items:

n
U* (En) n E u*(e i).

In this case,

EVSI(enlEn-1) = u*(en) -u*(eo)

so when an exicting data base is to be modified, only the items

in question need be considered.

If, on the other hand, the ei are utility interdependent, this
decomposition fails: the value of adding en depends on the

items which are already present. Let the set z contain every

combination, z, of the outcomes of each of the experiments
el,...,en. Then we have

u*(En) = EZIEn 'axaEslz,Enu(a'a).

* Thus, a. very difficult set of probability assessments is required

over Z x S, the joint space of combinations of experimental out-

comes and events.

p * If we now consider the operation of the system across scenarios,

the assessment effort is increased many times. (Nute in
addition that scenarios need not be utility independent:
failure in one may increase the value of success in another.
Thus, summing EVSI across decision problems may lead to dis-

tortion).
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Even without interaction, the burden of assessments and comp-
utations for system VOl would be prohibitive. With interactions,
it is probably impossible.

2.2.9 The problem of specifying structure. As we have seen,
VOl methods presuppose a highly structured decision problem:
a specified set of options, a specified set of uncertainties
bearing on the choice, and a specific source of information
which can reduce the uncertainty in specified ways. This
requirement raises problems quite apart from the assessment
burden it imposes. The set of scenarios in which a C3 1 system
is expected to operate tends not only to be large, but - for
a variety of reasons - not very well-specified.

* Technological advances in sensors and weapons will
affect options and information sources. Such de-
velopments are not fully predictable in advance.

S*e The options which we perceive as available will
evolve as tactical doctrine changes in unforeseen
ways.

* The most critical "state of the world" in deter-
mining the outcomes of our actions will be the
actions of our adversaries. These derive from
policies of which we will have only partial knowledge.

In reducing the complexity of VOl, we will decrease the re-
quirement for structure. An incidental bonus is that we
may be increasing the scope for information system flexibility.

2.2.10 Standard simplifications of VOl. Methods for
simplifying VOl analysis do exist. Some are particular to
the value of information, while others represent quite general
methods for "pruning" decision trees. Unfortunately, these
methods are not entirely successful in resolving the diffi-
culties discussed above. In general, either there is insuf-
ficient reduction of complexity or else the analysis is so
generic that, in essence, the benefits of the Vol concept are

sacrificed.
3I 2-22
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2.2.10.1 Opportunity lose. A formulation in terms of op-

portunity loss can sometimes ease the assessments required
for VOI analysis. In place of utilities, u(a,s), at t!ie
terminal nodes of the decibion tree, we can place the error
cost or opportunity loss:

t(a,s) - u(a ,s) - u(a,s)

where aa is the option we would choose if we had perfect know-
ledge that s is the case. We can compute the expected op-
portunity loss of a decision with experiment e1, *(eI), by
averaging out and folding back as before, only assuming that
the decision maker minimizes expected opportunity loss at each'
decision node rather than maximizinq expected utility (Brown,

* Kahr, Peterson, 1974; Raiffa and Schlaifer, 1961). The
expected value of imperfect information for e1 is then:

EVSI(eI) 1 £*(e ) -*(eI)

= [u*(PI) - u*(eo) - [u*(PI) - u*(eI)

Opportunity loss is useful when the components of L(a,s),
u(ass) and u(a,s), are additively decomposable into: (i) a
common factor which is difficult to assess, and (ii) a.

critically varying factor. For example, some aspects of the
utility of a decision problem may be constant whether or not
the optimal action is selected, e.g., the cost of deploying a
platform may not depend on the tactics adopted. This common
factor drops out of the analysis and need not be considered
when the difference, X(a,s), is assessed directly.

Analysis in terms of opportunity loss omits no relevant infor-
mation from the assessmeitt of EVSI. Clearly, however, the
reduction in the assessment task is quite marginal in terms of
the total assessments still required.

2.2.10.2 Perfect information. The expected value of perfect

information can be used to set an upper bound on the amount
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the decision maker should be willing to pay for information.
"The computation of EVP1 is considerably simpler than for

EVSI, whether or not in terms of opportunity loss. The
experimental outcomes need not be enumerated, and a probability

measure need be assigned only to S rather than to Z x S.
Moreover, a rIugh assessment of RVSI can be based on EVPI
by the process of "anchoring and adjustment." The evaluator

need only assess the proportion P1 of the value of perfect
information which he believes will be afforded by the imperfect
Sinformationel. Then

PI-EVPI

The evaluator will probably place more confidence in the
adjustment process if he has actually calculated both EVS1
and EVPI for a few information items. Nonetheless, it i3 far

from clear that the assessment of P will be sutticiently

refined to distinguish among many proposed alternative data bases.
In comparing e1 and e 2 , for example, the relevant comparison
is between P1 and P 2, EVPI dropping out as a common
term. But this boils down simply to a holistic assessment of

VOI for el and e2 , with no explicit analysis of their differential
impacts on decision making.

2.2.10.3 Scenario sampling. An exhaustive elaboration of

scenarios is fortunately not required for the evaluation of
information systems. Considerable decision-analytic experience

has been gained in the past few years in the generation of sets
of manageable scenarios which, nevertheless, constitute adequate

bases for evaluation of systems.

O'Conner and Edwards (in press) have proposed some general con-

cepts and methods for generating a satisfactory set of scenarios.
Four criteria can be identified from their paper. Scenarios

should be:

(1) realistic;
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,(2) relatively probablel
(3) representativel
(4) maximally discriminating among systems.

Criterion (1) can be satisfied by adding detail that has

approximately the same effect on the evaluation of all alter-
natives. Criterion (2) requires not that scenarios be

probable in a literal sense, but that they be probable re-

lative to other scenarios specified at a comparable level
of detail. Criterion (3) requires that the selection of

*• scenarios be an appropriate sampling from the total "scenario
space.," Once the appropriate dimensions of this space are

defined, achievement of criterion (3) can usually be assessed
by expert judgment. The major difficulty is in defininq

these dimensions so as to satisfy criterion (4) as well.

Once appropriate scenarios are selected, system utility can be
estimated as a weighted average of the utility within each

* scenario. Weights represent the probability of a scenario
relative to the probability of the selected scenario set, rather

than its probability as such (which will be very small).

These concepts were developed in the context of applying multi-

attribute utility models to the evaluation of complex military
systems. Their relevance to present concerns, however, is

twofold. First, of course, they may be applied straightforwardly
to the evaluation of C3 I systems. More important, however,

is a second -- and novel -- application of these concepts to

the determination of the expected value of a set of information.
This latter use would, in essence, substitute sets of infor-
mation in place of the alternative radios (Chinnis, Kelly,
Minckler, and O'Conner, 1975), radars (Barclay, Chinnis, and
Minckler, 1975), or other equipment being evaluated.

* These techniques, however, do not reduce in any way the assess-

ment effort required within a scenariol and the total number

of scenarios which needs to be considered may.still be quite large.

* 2-25

*.. . . . ...... . : -



*11

2.3 Modifications in VOI Techniques

The problem of simplifying VOI analysis so that it becomes man-

14, ageable for information systems remains unsolved. In this sec-

tion, we turn to some more fundamental problems in the VOI ap-
proach. Modifications of standard techniques which have been
proposed to deal with these problems may lead us some distance
toward the desired simplifications.

2.3.1 The consistency condition. A very strong assumption,
implicit within the standard decision analytic treatment of
VOl, concerns the behavior of the decision maker when he arrives
at the subsequent decision node (e.g., the choice between 1a and

a 2 ). Not only is it assumed that the structure of the decision
problem is fully specified, but it is assumed that the decision
maker acts rationally upon that structure. The "consistency

condition" says that the portion of the decision tree following
the decision node will adequately represent the decision maker's
view of his problem when he gets to it. This means:

(1) He will compute expected utilities for each option using
the modeled conditional probabilities and utilities.

(2) He will then maximize expected utility.

(Alternatively, we need only require that he will act as though
(1) and (2) were true.)

The traditional analysis thus takes a normative view of subse-

quent as well as initial decisions. Its output is not simply

a recommendation concerning information purchase, but a "de-

cision rule" prescribing subsequent choices contingent on out-

comes of the experiment.

This normative approach, and the consistency condition under-

lying it, are closely related to the non-negativity of VOI.
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It must be remembered that VOI is the prior expectation of

the value of information, before receiving it. If the decision

maker feels that the information to be provided will be mis-
leading, he should also anticipate that he will take that feel-

ing into account when he comes to act on the information. (It
is reflected in the conditional probabilities for states of the

world which he assesses now and will act on then.) By incorpor-
ating his misgivings into the model, he dispells them. In es-

sence, the consistency condition states that, at any given
time, he should not be surprised about (have failed to antici-
pate) his feelings or opinions at that time.

Nevertheless, the normative approach to subseguent decisions,
reflected in the consistency condition, may conflict with the
goal of evaluating information decisions. For this purpose,
what is needed is a prediction of what the decision maker will

do with the information. In effect, the consistency condition
takes prescription as description: he will optimize with re-

spect to the information available at the time of the analysis.

2.3.2 Acts as events. Rex Brown, in his paper, "Heresy in

Decision Analysis: Modeling Subsequent Acts Without Rollback"
(1975), advances the idea that, in certain situations, subsequent
acts should be modeled by probability nodes rather than decision

nodes. Thus, rather than constraining the decision maker to
maximize expected utility for decisions some time in the future,

we suppose that there is uncertainty in the way in which he will
act.

2.3.2.1 Failures of consistency. The circumstances in whichj

this proposal is appropriate are just those in which the con-

sistency condition fails to hold:

(1) Such a concept is of value if one believes that the de-

cision tree does not fully model the events up to the time of

the decision, i.e., the information that may then be available
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to the decision maker. If this possibility is admitted, then
the concept of maximizing expected utility for subsequent acts,
by rolling back the decision tree, becomes invalid. Even if
the decision maker in fact maximizes his expected utility in
the subsequent decision, the option he selects need not be the
one which maximizes expected utility conditional only on the
modeled information.

(2) Similarly, the decision maker, now, may feel that in the
future, he might change certain aspects of his analysis of the
problem, including his probability assessments or utility func-
tion. In principle, it is possible to model any such set of
changes as event forks in the decision tree prior to the sub-
sequent decision node. But it is clearly out of the question
to model explicitly all possible probability assessments and
utility functions (cf., Brown, 1975). Not only would proba-
bility distributions have to be assigned to all the possible
changes, but--in order to predict the decision maker's choice
by rolling back the tree--probabilities subsequent to the de-
cision node would have to be made conditional on these changes.
This would require a set of second-order assessments on the
diagnosticity of the new probabilities or utilities, regarded
as information, for the "true" or "authentic" values (cf.,
Nickerson and Boyd, 1980, and Tani, 1975, discussed in Section
2.3.2).

These observations suggest an in principle limitation to the
modeling of this type of change, in one's basic view of the
problem, within the traditional VOI paradigm. There is nothing
logically to prevent the decision maker from changing these
second-order conditional assessments as well during the time
before the subsequent decision. But in order to model this
change, he would need a new, higher-order model--and so on,
into an infinite regress. Far-fetched as this kind of example

* seems, it does represent a fundamental formal limitation on
the power of traditional techniques to describe all decision
problems.
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(3) Some instances in which the consistency-condition is
violated do not seem amenable to fuller modeling in terms of
events at all. The decision maker may predict that on account

"of fatigue, time pressure, limitations of memory or cognitive
capacity, he will fail to process certain information (e.g., a
danger signal) appropriately. This could be true even though

in the course of the VOI analysis, he (perhaps with the help

of a decision analyst) has already worked out how he should
process it. It seems quite implausible to regard factors

like fatigue as "information events." In these cases, the
decision maker simply lapses from his own normative standard.

(4) Another case which does not seem amenable to traditional
methods is that in which the decision maker adopts a new "de-

cision rule." Perhaps his behavior, rather than maximizing

expected utility, can be expected to reflect some of the
"heuristics" described in recent psychological literature

(Kahneman and Tversky, 1977; Slovic, Lichtenstein, 1971).

One can always, of course, so define the decision maker's
utility function that the "act" of obeying a heuristic turns

out to maximize expected utility. In this case, one attri-
butes to the decision maker an affection for the heuristic

as such. But this rather trivializes the notion of optimal

behavior and, further, is likely to contradict the decision

maker's own, more reflective normative views. In addition,

there is a near contradiction in supposing that the decision

maker uses maximization of expected utility (on a second-order

level) to conclude that he should not use it (on a first-order

level).

The plausibility of the consistency condition may be particu-

larly doubtful in the case of information systems, where the

system designer and the decision maker are not, typically, the

* same person. The likelihood that decision maker and system
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designer use different decision rules, or that the system

designer will fail to consider information events available
to the system user, is correspondingly greater.

2.3.2.2 Sufficient modelina. Even if it were possible, in

principle, to model all these problematic changes as "infor-

mation events," it is not logically necessary to do so.

Modeling acts as events represents a formally sufficient de-

gree of modeling (Brown, 1978), even when information events
are omitted from the analysis or when acts are influenced by

other sorts of causes. Events may be implicitly "integrated

out," without affecting the results of the analysis, as long

as they do not precede a decision node. And there should be
po greater difficulty in predicting one's own behavior, as
an uncertain evenr, than in predicting environmental events
which, similarly, are subject to complex and inexplicit causal
influences

To be sure, the acts as events model does have shortcomings.
Most obviously, using this idea will to some degree lessen the

prescriptive power of the decision analysis paradigm, for the
decision maker will not get so much guidance in his future de-
cisions.

More importantly, perhaps, little guidance has been provided,

thus far, on how the required assessments are to be obtained.

Two sorts of novel judgments are needed in this approach:

"" for each option, the probability that the decision

maker will adopt it, conditional on the modeled

* information; and

"e for each option, its expected utility, conditional

on the assumption that the decision maker has adopted

* *it.
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These assessments essentially reverse the order of precedence

in the standard technique. There, the probability of a state

of the world, conditional on the outcome of an experiment, was

independent of the action adopted:

P(sleza) - P(sle,z),

since the action was assumed to be selected solely on the basis

of an inference about s suggested by the experimental outcome.

When, however, it is assumed that action is based on unmodeled

information, the assessment of the probability of s, or the

probability distribution on terminal utility u, must be

adjusted to take this hypothesized information into account.

If the act is selected, we assume it was for a reason. It is

not clear, however, what the nature of this adjustment should

be.

Despite these difficulties, it is clear that the acts as events

model holds promise for our considerations of the value of in-
formation stored in a data base. The expected benefits include

the simplification due to not modeling all information items

and the entire decision process, as well as the increased

validity due to accomodating violations of the consistency

condition. Moreover, as we shall see, methods to facilitate
the assessment task are available.

2.3.3 Value of analysis. Among the items which may potentially

be included in an information system are programs for inference

and decision aiding. Such programs, which are frequently inter-

active, may help the decision maker structure the problem, by

* identifying options and major uncertainties bearing on the

outcome, and may help him arrive at a solution by applying

formal tools of statistics and decision theory (e.g., Barnes,
.1980; Cohen and Brown, 1980). Inputs may De either subjective

* judgments or objective data, including other items in the data

base.
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The evaluation of such programs raises a special set of problems

in the application of decision analytic technique:

o Standard VOI techniques assume that the situation is

already modeled before the analysis can be evaluated.

Were such indeed the case, there would of course be

no value in performing the analysis again.

o Decision analysis decomposes initially very complicated

and difficult assessments into simpler ones. If the

result of the analysis were always consistent with

initial judgment, there would be no point in doing the

anlaysis. We thus view the decision maker as an

inconsistent probability assessor. It seems odd, then,

to base a theory of the value of analysis on the con-

sistency condition, as embodied in VOI.

* Using decision analysis can be very expensive. It is there-

fore not surprising that in recent years potential clients

have wanted some indication of how much the analysis would

be worth, before they contract for it. However, only a few

papers have been published upon the subject of evaluating

decision analysis. These appear relevant, as well, to the

issue of including automated decision analytic aids--in ad-

dition to aids of other types--within information systems.

In this section we shall review the three major papers appearing

in the literature.

2.3.3.1 Watson and Brown. The paper by Watson and Brown, en-

* titled '"The Valuation of Decision Analysis" (1975), uses a de-

cision analytic model in the evaluation. However, rather than

require a full model of the problem, they use the simple tree

of Figure 2-3. Uncertainty is encapsulated within the xi, which

* are the expected utilities for actions which will arise from

"perfect analysis." In evaluating such perfect analysis,
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the calculation is precisely the same as with value of perfect

information, but information concerns the xj. Because this
"is simply value of perfect information, it is easily shown that
such value will always be positive.

Watson and Brown similarly model the value of imperfect analysis
by assuming that the imperfect analysis will alter our prior

distribution concerning the results of a potential perfect anal-
ysis. Thus a node is introduced before the decision node which
describes the outcome of the imperfect analysis, and another un-

i 'certainty node appears after the decision node which describes

the uncertainty concerning the perfect analysis, given the imper-
fect analysis results. However, Watson and Brown do not assume

the consistency condition and thus are able to provide an ex-
ample where the value of imperfect analysis is negative.

Rather than assume the consistency condition the authors assume
that the decision maker will follow the recommendations of the

imperfect analysis, whatever his prior beliefs may have been

concerning its validity. They thus assume a version of "acts
as events" in which the probability of an act is equal to the
likelihood that it will be recommended by imperfect analysis.
Negative expected value arises if the decision maker believes

beforehand that the imperfect analysis will be sufficiently

poorly done as to worsen his position.
S

If those prior beliefs were incorporated into the analysis, we

would find that the prior expectation of the results of the per-
fect analysis, given the imperfect analysis, would be precisely
the results of the imperfect analysis. After all, if, after an im-
perfect analysis, the expected value of the expected utility of
an action that would be obtained by a perfect analysis, differed
from the expected utility obtained by the imperfect analysis,
the imperfect analysis could be instantly improved by changing
its results so that the equality did hold.
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A Incorpcrating prior beliefs in this way is equivalent to the consis-
tency condition; selecting the act with the highest expeoted value

according to the imperfect analysis is, in this case, the same as

rolling back the decision tree.' In such a case, it is easy to

prove that the expected value of analysis will be positive.

ThiA version of the consistency condition seems sensible. It

is plausible that an (imperfect) analysis might in fact lead

one astray. But it is less plausible that one would expect

this to happen beforehand, yet also expect to undertake the

* analysis and abide by its results.

The real issue of consistency in this context is not whether

the decision maker will roll back the tree (or modify the im-

* perfect analysis) based on his conditional expectation of the

results of perfect analysis. The issue rather is whether he

can meaningfully formulate such an expectation in the first

place. Joint probability distributionis need to be assessed
over the values of imperfect and perfect analysis. Since the

distribution over the results of the imperfect analysis assumes

a good understanding of what that analysis will be, it seems

unfair that the decision maker be required to make such assess-
ments. Yet it is not in the spirit of decision analysis for the

analyst to describe how good he believes his analysis will be,

or to preecribe the degree of confidence in it to be felt by the

decision maker.

The concept of perfect analysis may itself not be meaningful to

the decision maker. Not only can it not in practice be carried
out, but the existence of a unique set of psychological proba-

bilities to be uncovered by such an analysis is doubtful.

Despite these difficulties, it may be that inconsistent assessments

(which motivate the use of decision analysis) cannot be modeled with-

* |out some concept of perfection, to provide a point of comparison

against which the obiined assessments can be evaluated. Such a
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concept is indeed common to all approaches to this, and similar
probloms. The calculation of the value of analysis may be
sufficiently insensitive to the precise nature of the second-
order distributions, to justify the use 6f lhese concepts at
least in a heuristic sense.

The Watson and Brown approach assumes that the available options
to the decision Maker have already been modeled. However, in
many situations this is a very major part of the analysis. Once
this has been carried out, it may well be easier to perform a
very quick and rough decision analysis on the problem, carry
out a sensitivity analysis on the parameters and use this
information to help the decision maker decide, and use this

further analysis is required. Thus, difficult second-order
assessments need not be undertaken if options are specified.

2.3.3.2 Tani. Steven Tani, in his paper, "A Perspective on
Modeling in Decision Analysis" (1978), views the aim of decision
analysis as being to help us obtain a probability distribution

over an outcome variable (e.g., profits) that is "better" than the
one which we can assess directly. In order to define "better",
he brings in the concept of an "authentic probability." An

* authentic probability is one which most accurately describes all
our beliefs about the event in question. He then contrasts these

authentic probabilities with probabilities that can actually
be assessed, which he calls "operative." The "goodness" of an
operative probability is then defined in terms of its closeness
to the authentic probability.

Tani builds a probability distribution describing where the
authentic probability may in fact lie given the elicited oper-
ative probability. We view the authentic probability as that
probability we would provide after an infinate time for thought
and introspection. We may view this probability distribution
over the authentic probability as our uncertainty, after
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finite time for thought and introspection, as to what we might

think after infinite time. Its expected value is the operative
probability itself (a version of the consistency condition sim-
ilar to that discussed by Watson and Brown); and the variance
of this distribution measures closeness to the authentic proba-
bility.

The value of modeling is simply the value of reducing our un-
certainty concerning the authentic probability. Standard VOI
analyses may then be carried out on these probability distribu-
tions and the value of modeling can be calculated.

Tani's concept of an authentic probability provides some
elucidation of Brown and Watson's notion of "perfect analysis."
It is also similar to work in reconciling incoherent probability
assessments by Lindley, Tversky, and Brown /(1979). They use
the idea that operative probabilities are noisy measurements of
the authentic probabilities, and may therefore be in error. The
problem, of course, is that the required assessments may. still
be quite difficult. There is no guarantee that the second-order
probability distributions will themselves be authentic! A second
problem is that, again, the calculations may only be carried out
if the majority of the modeling has already been performed.

2.3.3.3 Nickerson and Boyd. Nickerson and Boyd, in their paper,
"The Use and Value of Models in Decision Analysis" (1980), take
the view that the modeling in decision analysis should be viewed
by the decision maker as simply another piece of information
to be incorporated into his overall system of beliefs. Thus,

* rather than expecting the decision maker to follow the recom-
mendations of the analyst unquestioningly, Nickerson and Boyd
suggest that the decision maker should use Bayesian updating
on his beliefs prior to the analysis and use his updated be-

* liefs, independently, to choose his preferred option posterior
to the analysis.
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The model that Nickerson and Boyd build for evaluating a

decision analysis supposes that there is a "true" equivalent
reference value for each option& the value that will actually
result if that option is selected. Then the authors assume that,
at any stage, the decision maker can build a probability distri-
bution over what that true value might in fact be. Then "perfect"
modeling is defined as a modeling effort that yields a probability

mass function with all mass concentration at the actual equivalent
reference value for each alternative. Thus, perfect modeling
provides perfect information about the equivalent reference value.

A This is therefore a much more stringent requirement for perfect
modeling than the ones used in the other papers, where a perfect
model is simply one which fully encapsulates our current subjective
beliefs about the expected utility of each action.

Nickerson and Boyd are then able to use the standard VOI con-
cepts to calculate the expected value of perfect modeling, as
the expected value of perfect information about the equivalent
reference values. Similarly the expected value of imperfect
modeling is simply the value of imperfect information about
those equivalent reference values, under the assumption that
the decision maker will incorporate that information optimally
into his belief structure. It can then be easily shown that the
expected value of modeling must always be non-negative.

A major difficulty with this approach is the assumption of the
* existence of "true" equivalent reference values, to serve as

points of comparison for evaluating obtained assessments. Such
values are clearly not objective, in the sense that the yearly
amount of rainfall in Minneapolis is objective. They incorpor-
ate such subjective factors as utility functions and tradeoffs
between different attributes. In order to determine a "true"
equivalent reference value, therefore, one cannot simply pre-
dict, and then observe, the value which "occurs." Some digging
within the decision maker's'psychological field is required, to
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ensure that all his relevant beliefs are incorporated. But this
is essentially the idea of "perfect analysis" or "authentic

probabilities."

On this approach, as on the previous ones, the assessments re-
quired with imperfect modeling, in order to incorporate the im-
perfect information into the decision maker's beliefs, are
very difficult. The method also suffers, of course, from the
usual difficulty that the options are assumed, predefined.

However, there do appear to be many situations in which these
concepts may prove applicable. The idea of using decision anal-
ysis only as a source of information to the decision maker
seems more valid than the more usual assumption that the
recommendation of the decision analysis is what the decision
maker should choose to do. A very similar procedure was
developed by members of DSC to help evaluate potential infor-

mation in a forest planning situation (DSC Report, 1980). The
notion that decision aids are information seems particularly

appropriate in the area of command and control, where it under-
lines, the fact that such aids support, but do not replace, the
decision maker.

2
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3.0 TECHNIOUES FOR INFORMATION SYSTEM DESIGN

In this chapter we sketch out, on a conceptual and algorithmic

level, some ideas for assessing information value in the context

of system design. In large part, these ideas are as yet untested.

We observed in Chapter Two that standard VOl techniques, while

properly focusing attention on the decisional impact of

information, require a highly structured context in order to be

applied. They presume a specified information source or

experiment, specified experimental outcomes, specified

uncertainties about states of the world, and specified options.

"Such analyses quickly become intractable when applied to complex,

multi-purpose systems, expected to operate in a variety of

environments, some of which are quite ill-defined. Moreoever,

they lack the flexibility to handle non-optimal responses to

information. And, finally, they cannot be employed to evaluate

aids which support inferential and decision making processes.

Our objective is to devise methods which are simple and flexible,

yet incorporate in a realistic manner the impact of information on

decision making. Clearly, different degrees of specification and

structure will be appropriate for different evaluative purposes.

In each case, specifications which limit the tractability or

validity of the analysis at hand must be omitted. Our strategy,

however, is to find, within this constraint, a degree of modeling

that is not only formally sufficient to express the value of

information, but which includes, explicit reference to decisional

impact.

We will begin with a relativoly highly structured technique and

derive new ones by progressive abstraction. The first technique

to be considered, however, is, itself, a generalization over

standard VOI procedures. The models to be described reflect the
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following sequence of increasing abstractions

(0) standard V1i;

(I) unspecified experimental outcomes;

(2) non-optimal behavior;

(3) unspecified states of the world;

(4) unspecified options;

(5) multiattribute approximation.

3.1 Unspecified Experimental Outcomes

In a number of circumstances traditional VOI techniques are

inapplicable on account of the character of the data set being

evaluated. Those techniques require:

(1) that the information take the form of

"experiments", with variable outcomes not known

in advance; and

(2). that the possible outcomes of an experiment be

spelled out and probabilities assigned to them.

Often, however, it is either inconvenient or impossible to satisfy

* these conditions. In particular, the impact of a given item of

information may depend on the context of other items in the data

base. Spelling out all possible combinations of outcomes of all

experiments, assessing their probabilities, and assessing probabil-

* ities for states of the world conditional on such combinations, may

present insuperable difficulties (see Section 2.2.7).

3-2

I



Moreover, in some case@ the information to be evaluated will

take the form not of experiments, but of facts, from physics,
history, or recent intelligence. Facts make trouble for
traditional preposterior analysis since, unlike experiments,
they have but a single "outcome." Facts are known to the

system designer, but are not - if inclusion in a data base is
useful - present in the "working memory" of the system user. in
this case it is obvious that predicting user choices by rolling Lack

the system designer's model of the subsequent decision will be in-
appropriate. Since the fact is already known to the system
designer, conditionalizing on it will not alter the probabilities
he assigns to states of the world. It is the user whose
posterior probabilities (and actions) may be affected by in-

clusion of the fact in the Actual Data Base.

3.2 Acts as Events in System Evaluation

These difficulties can be handled by treating acts as events
0 (Brown, 1975), Information, to the extent that it has value,

may change a decision maker's choice of action (Section 2.2).

Thus, if experimental outcomes occurring prior to a decision are
not explicitly modeled, the prediction of action based on
rolling back the decision tree is invalid (Section 2.3.2.1).
However, an alternative approach allows such outcomes to be
"integrated out." This involves treating subsequent decisions
as uncertain events and assessing probabilities for states of

* the world and utilities conditional on the action selected

(Section 2.3.2.2).

The acts as events model applies to the evaluation of a single
item in a data base, to the evaluation of groups of items, and
to the evaluation of facts.

(1) we first consider the value of adding information item en
F to a data base, EnI consisting of items (el,?...,en The
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value of en may well depend on the inclusion of some or all

of En 1 (Section 2.2.7). If such interactions exist, the

computation of this value,

EVSI (en! En 1 ) - u*(En) - nu l

according to the standard VOl analysis, requires an enormously

complicated decision tree in which the possible outcomes Z(iM

of each experiment ei are modelled (Figure 3-1). If, however,
we treat the decision node for a as a chance node, we may

validly omit reference to the outcomes of experiments.

In figure 3-2, we choose to model only the outcomes of en, i.e.,
the experiment under consideration. Uncertainty concerning the

outcomes of other experiments must be implicitly considered
in assigning probabilities to acts, a, events, s, and (if

S does not exhaust the relevant states of the world) to the
distribution on terminal utility, u. If the evaluation can
consistently produce such assessments, the value of EVSI(enIEn. 1 )
calculated from Figure 3-2 should be the same as from Figure

3-1.

(2) The acts as events model enables us to group experiments

for the purposes of assessment. Consider the evaluation of
a large set of information items, En, as the potential contents

of a data base. If the elements of En interact in their impact
on decisions, standard VOl once again requires a complex
tree, as in Figure 3-3, to evaluate:

EVSI(En) - u*(En) - u*(eo).

By treating acts as events, we can achieve any desired degree

of simplification. All experimental outcomes may be omitted,

or (as in the lower branch of Figure 3-2) we may explicitly

model outcomes for selected elements in En.
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Figure 3-1

Standard VOI for a Single Experiment
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Figure 3-2

Acts as Events VOI for a Single Experiment
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(3) The inclusion of facts in a data base could never,
on standard VOI analysis, be justified. Mere inclusion of an
already known fact in a data base will not change probabilities
for states of the world, hence, will not change subsequent
decisions. (And we do not wish to compare inclusion of a fact
with a hypothetical state of the world in which the fact was not

true!) By treating acts as events, however, we can distinguish
the effect of including a fact on the user's decision making,
from its role in the system designer's assessment of probabilities

for states of the world. Since acts are not predicted by rolling
back the tree, the system designer's probabilities for states
of the world remain constant while the user's actions change.

The value of knowing a fact will, for most C2 applications,
depend on the experiments which are also included in the data

base. Thus, a fact, fit will typically be evaluated in a context
of experiments (and other facts) En, in accordance with the
methods of (1) and (2) above. In Figure 3-4, experimental
outcomes for one experiment, ej, have been explicitly modeled
and others integrated out.

Note that the probability assignment for states of the world is

independent of the inclusion of fi in the data base:

P(lsE + f i z(j, a) - P(sE n, z j) a).n i n" i

* That is, in either case the system designer uses all his factual
knowledge, including fi' to evaluate the conditional probability

of s. On the other hand, the probability of an action is not

independent of the inclusion of fit

P(ajEn + 'fit z D P(aIEn' zlJ)'

* assuming that the decision maker does not already have a working

0 knowledge of fi"
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3.3 Asgessment heuristics. The acts as events methodology
vastly reduces the number of judgments require4 in order to
evaluate experiments. However, the asseasments which remain
appear quite difficult. A large amount of implicit informa-
tion must be integrated, within the mind of the assessor, in
order to arrive at estimates of probabilities and expected
utilities for actions. The probability *tsat an action will
be chosen must reflect the expected impact of omitted exper-

imental outcomes, and the expected utility of the action must
be based on the assumption that the act was chosen on account
cf such impact.

3.3.1 Auxiliary decision tree. One approach is to assess
these quantities directly. However, a more natural procedure
would be to start with the assessments in a traditional, but
abbreviated (hence invalid) decision tree, and then derive
the required assessments by adjustment. Consider again the

S value of adding a single experiment, en, to the data base,

En-l (Figure 3-2). For this problem we construct the auxil-
iary tree in Figure 3-5. This, of course, is the diagram one
would use in a standard preposterior analysis which, incor-
rectly, fails to model e 'a information context, En_1 Rol-

n
ling back this tree, we compute the expected utility for each
option, conditional on incomplete information,

u*En,z(n)za) - E (n) u(a,g)m n slenz

and similarly,

u*(eoa) - Esle u(a,I),
m l 0

where subscript m indicates that these values derive from a
auxiliary model. The assessments for utility and for
P(sle,z) are straightforward here, since acts are not regarded
as events upon which they must be made conditional.
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It remains now to discuss methods for deriving the required

judgments: act probabilities and expected utilities conditiovnl

oa complete information.

* 3.3.2 Assessment of act probabilities. If, contrary to assumption,

Figure 3-5 modeled all the relevant information available to the
decision maker, we would expect him to choose, after observing

z(n) the action which maximizes u(en,z(n) a). The problem, of
course, is that, because we have integrated over information

events, there is uncertainty as to the actual expected utility,
u*(Enz,a), which the decision maker will assign to option a after

observing all the experimental outcomes. Z(n) is a partition oft h e t o a l s p c e , Z - ( I ) x ( 2 ) . (n )
the total space,,Z - Z() x Z ... x , of experimental out-
comes, having been obtained by marginalizing over outcomes of all

other experiments. Thus, u*(e ,z(n) ,a) is merely the expectation,
with respect to the ignored experimental outcomes, of the random
variable, u*(Eni,a). The probability that the decision maker
will select option ai is the probability that u*(E n,,a.) exceeds

Su*(En' ,ej ) for all i 0 j.

A well-known device for approximating such probabilities is based

on the choice axiom described by Luce (1959, 1963, 1977). Abbre-
Sviating um(enz (n),ai) as u,,i, we let:

P(aiE n, n (u* mi)c
n (1, * )c

The exponent, c, is a measure of the accuracy with which the
expected values, u*m'i, represent the distributions of u*(En,2,a).

* It thus reflects the system deiigner's confidence in the complete-

ness of his model of information events. (Yovits, Rose, and

Abilock (1969-78) use this equation, with an anlogous interpretation
of c, for a quite different, normative purpose. In the context

of signal detection (Luce, 1963), the exponent reflects the number
of. independent observations of a stimulus.)

3-12
9



Using the choice equation, probabilities for acts can be assigned

on the basis (i) of their expected utilities conditional on
incomplete information and (ii) a single additional assessment,

c. The plausible range for c is between zero and infinity.

When the modeled information is complete, c goes to infinity,
and the choice equation predicts with a probability of one selection
of the act with highest expected utility. On the other hand,

when the number of unmodeled events and the swings in utility

which they can genezate are large, there is no reason to
suppose that the judgments of the decision maker will correspond
to the model. In this case, c equals zero, and choice prob-
abilities, from the point of view of the model, are random:

P(aIEn, z(n)) - 1/q for q alternative actions.

The intermediate case in which c=l is of particular interest,
since it represents the case in which response probabilities
are proportional to utility (cf., Luce, 1959).

A nice property of the choice equation is that, for Oc<",
the order of action probabilities corresponds to the order of
expected utilities conditional on incomplete information. Use
of the equation thus ensures satisfaction of a desideratum for
the assessment of action probabilities suggested by Brown (1975).

Note that by introducing terms for "response bias" (Luce, 1963),
we obtain a more general form:

nn bi (u*m i)cP~al~'Zn =j j (Um,jc
i I

The bi reflect any feelings the system designer may have about
the inclination of the decision maker to adopt specific acts,
independent of events (whether modeled or unmodeled). Thus,
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when c equals zero, actions are unpredictable in terms

of events, and:

P~I~(n)) . bi
P(ailEn,z

3.3.3 Assessing c. A convenient procedure for assessing c is

suggested by the following formula, in which we write Pi forI (n))
P(aiIEnEZP n)

pJ ulog i c log um i

j ~Ui

c is, therefore, the slope in logarithmic coordinates of the plot

of response probability ratios to ratios of expected utilities.

This relationship can be exploited in two different ways:

e Ratios of response probabilities can be assessed
for several hypothetical ratios of expected utilities.
A straight line may then be fit in log-log coordinates
to the obtained points, and the slope taken as an
estimate of c.

* The slope may be assessed directly by adjusting a
straight line in these coordinates. The implications
of any particular adjustment for the relation between
the two sets of ratios may be read off.

Both methods assume that the assessor will have reasonably
consistent intuitions that, for example, a response twice as

high in expected utility is three times as likely to be chosen,
etc.

It is worth noting that the arctan transformation of c,

corresponding to the angle of the slope, transforms the range
of c to a bounded interval, with c - 1 as the midpoint. This

may be a reasonable scale to use, therefore, if it is desirable

to got a quick numerical estimate of "model completeness."
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3.3.4 Aisessment of expected utilities. Unfortunately, we know

of no procedure of comparable simplicity for deriving expected

utilities for actions, conditioned on the action having been

taken, from the modeled expected utilities. We do know, of course,

that the adjusted expected utility, u*(en,z (n),ai), will be greater
than the modeled one, u* i if unmodeled events are thought to

affect the utility of aj. If ai is chosen, we assume that the

unmodeled uncertainties came out in favor of ai, and its expected

utility is greater than the average with respect to those uncertain

events.

Ideally, a formula could be provided which uses the parameter c
and the u* to give u*(E ,z (n),a). In the absence of such am,i
formula, however, some rules of thumb can be offered. These

rules require a rough assessment of the effect of unmodeled events

on the expected utilities of the options, i.e., the uncertainty

concerning u*(en,1,ai), given z

e if uncertainty about expected utility u*(E n,,a) for

given experimental outcome z(n is approximately the

same for all options a, the order of the adjusted

expected utilities, u*(E,z (n),a), should be the same

as the order of the modeled expected utilities, umi

e The larger the effect of unmodeled events on u*(E ,z

the greater the adjustment for that act: i.e.,
u*(Enz (n, ai exceeds u* by a greater amount.

a Other things being equal, the lower the modeled expected

utility of ai, the more it must increase to be the

maximum, and the greater the adjustment. Thus, the spread

of the u*(En,z (n,a) is less than the spread of the UM.

9 When expected utilities for acts are negatively correlated,

i.e., events that help one act hurt another - the adjust-

ment needs to be less.
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Theme guidelines are based on the behavior of the expected value

of a random variable, conditional on its being the maximum of

a set of random variables.

A lower bound on the required adjustment can be quickly derived

if one is prepared to assume that the distribution of u*(En ,1,a)

for given experimental outcome z p, is normally distributed with

mean u*(en,z (n),a) and constant variance a 2 for all a. Let a1

be the act which maximizes u*(en ,(n),a) in the auxiliary model

(Figure 3-4). We now make the further assumption that the cor-

relation between u*(E n,,a ) and u*(E n,,ai) for all other acts

ai is -1. This means that any gain in utility for act ai, due

"to unmodeled events, is offset exactly by a loss of utility for
a1. It follows that the lowest expected value for ai at which

it could be preferred to a1 is midway between the two modeled

utilities:

L u* + .5(u* * .)
m,.i m",l m'

If a1 and ai are the only two options, ai will be preferred

for valued greater than L. Then the expected utility of ai,

given that it is preferred to al, can be obtained simply by

integrating from L and normalizing:

u*(En z(n) ,a) = x fi(x)dx fi(x)dx.

where f i(,) is the postulated normal probability function for(n)
u*(En,l,ai) given z . These integrals can either be approxi-

mated by a computer, or assessed from tables of normal probabil-

ities and the unit normal loss integral (Raiffa and Schlaifer,
1961).

This assessment heuristic requires only one assessment in addition

to those required for the auxiliary tree (Figure 3-4): the
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variance a' of the distributions of expected utility. This as-
sessment may be most naturally obtained as a credible interval--
e.g., the interval within which the expected utility is likely
to fall with 95% probability--from which the variance may be
computed. The result of the proposed heuristic is merely a
lower bound on u*(EnZ (n) .ai however, both because the cor-
relation was assumed to be -1, and because a and ai were assumed
to be the only options.

The relations between a2 and c has not as yet been spelled out.
However, both al and c should be chosen so that:

P{a•ijEn z(n,) f W~•xdx

since the integral on the right overestiLnates the probability
that ai will be preferred.

3.4 Non-Optimal Behavior

When information events are omitted from a traditional VOI
model of a decision problem, the decision maker's choices may be
inconsistent with that model. In another class of cases, how-
ever, the consistency condition (see Section 2.3.1) may fail
not because the model is incomplete, but because the decision
maker fails to act optimally on the information which he has.
The reasons for such inconsistency with the model may includa,
on the one hand, motivation, fatigue, and constraints on time,
memory, and attention, or, on the other hand, limitations of
knowledge (see Section 2.3.2.1).

An important consideration in C2 design, particulary in the
provision of inference and decision aids, is the extent to which
they will be used or--on account of habit, distraction, or
distrust--ignored. Clearly, in the context of system design,
the "consistency" of the user with the designer's model will
reflect the compatibility of the system with the perceptual,

* cognitive, and organizational demands of the situation, i.e.,
it will reflect the designer's skill.
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When, for whatever reason, the decision maker fails to maximize
expected utility as modeled by the designer, the acts as events

technique .s appropriate. We can use the choice equation and an

auxiliary decision tree, based on standard Vol analysis, to

assess the probabilities for actions.

As before, the paranteter c measures "consistency"t the expected
agreement of the decision maker with the system designer's model
(depicted in the auxiliary tree). However, in this case, we are
assessing not the completeness of the model, but the quality
of the user's decision processes. When c equals zero, the model
is unable to predict behavior, since choices are wholly unaffected
by the considerations the designer regards as critical. (It may,
however, be governed by response biases, represented by the bi.)
As c approaches infinity., behavior comes increasingly under the
rational control of the modeled information events.

A plausible rationale for the application oZ the choice equation
to acts as events is the assumption that the eApected utility

(n)of an action, u*(ent,z ,a), as assigned by the system designer,
stands in for a random variable. This variable represents the
expected utility assigned by the decision maker to the act. In
the case of incompletely modeled information events, uncertainty
is due to the effect of such events, as yet unknown, on the
decision maker's assessment. In the case of non-optimal behavior,
however, uncertainty concerns the degree of closeness of the

* 0decision maker's expected utilities to what ws assume are the
"true" (i.e., the modeled) expected utilities.

Note that in the application of acts as events to non-optimal
* behavior, there in no need to adjust the expected utilities,

u*(e,z,a), for actions. Unlike the case of omitted information
events, no presumption exists that a given act has been chosen
for a reason. Thus, the lower c falls, the more degraded the

* |expected utility of the decision problem with information, u*(e).
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3.4.1 Application to system design. As noted above, although c
reflects the user's decision processes, it will, to a large
extent, be'dependent on properties of the C2 system being evaluated.
It is a measure of system usability. Thus, a goal of system designSis--other things being equal--maximization of the value of c.
Factors affecting c include such diverse considerations as legi-
bility of displays, provision of inference aids to draw out the
implications of raw data, and appropriate training in the use of

the system.

In some cases, design questions may involve a tradeoff between
improvements in usability and improvements in "pure informational"
value. The latter is the difference between the modeled
expected utilities:

EVSIm(en) = u*(e u*(emn m n m 0

i.e., the value of the decision problem with and without experi-
ment en, given that the information is used optimally. (It may
be computed by standard VOI analysis, as in the auxiliary tree
of Figure 3-5.) A tradeoff miqht occur, for example, when
the algorithm which is optimal for solving a given problem in a
purely technical sense, is less likely to be used than a heuristic
which is more familiar or faster to apply.

The methods outlined above could be used to locate the optimal

point on such a tradeoff. Design options may be scored on the
two dimensions, usability (c), and pure information value
(EVSIm(en)). A region of feasible options and an "efficient
frontier" of undominated options may be defined within this two-
dimensional space. The options which are not eliminated in this
way can be evaluated by reference to the expected value of
information, EVSI(en). For each point in the space, this quantity,
in accordance with the acts as events technique and the choice
eguation, uses the assessment of c to degrade the pure information

value and arrive at a measure of overall utility. "Isopreference"
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contours may-be detined which represent the combinations of
usability and of pure information value which are equivalent in
terms of overall utility. Standard techniques can then be used
to locate the best feasible design option.

3.4.2 Application to value of analysis. The evaluation of
decision analysis (see Section 2.3.3) raises issues similar to
those involved in non-optimal behavior, since there may be a
discrepancy between the expected utilities assessed by a decision
maker and the "true" beliefs and desires. The critical differ-

0 Pence is that in the evaluation of decision analysis the true
expected utilities (those tnat woula arise in "perfect" anulynis)
are unknown. Thus, we compare the assessed expectea utilities
with the conditional expectation of the perfect expected utilities.

We construct an auxiliary tree, as in Figure 3-5, in which the
information event is the outcome of imperfect analysis (i.e.,
the vector of expected utilities assigned to options); an un-
certainty node after the decision node represents the possible
outcomes of perfect analysis, conditional on the outcome of
imperfect analysis. Since perfect analysis is assumed to
reflect the decision maker's true beliefs and desires, optimal
behavior consists in rolling back this decision tree, and
selecting the act which maximizes the expected value of expected
utility according to perfect analysis, conditional on imperfect
analysis.

The auxiliary tree reflects, in essence, the proposal of
Nickerson and Boyd (1978), that the output of decision analysis
be treated as information within a standard VOl framework, and
used to update expectations concerning "true" expected util-
ities. Although perfect analysis is unobtainable, this model
describes how the decision maker may still behave optimally,
with respect to his second-order assessments of the validity
of imperfect analysis.
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The behavior of the less than optimal decision maker can be pre-
dicted, by means of the choice equation, from the auxilliary
tree together with an assessment of c. c measures the agree-
ment of the expected utilities which the decision maker assigns

to actions with the conditional expected values of perfect
exp.cted utilities. Thus, it reflects the extent to which the
decibion maker performs the required second-order assessments.
When . approaches infinity, we have the Nickerson and Boyd
model in which imperfect analysis is assessed in the light of
prior beliefs concerning its relevance to perfect values. For
c equal to zero, behavior is random with respect to these as-
sessments.

By parameterizing consistercy in this way, we avoid assuming either
that decision makers are always consistent (Nickerson and Boyd)
or, on the other hand, that they always act unquestioningly on
the recommendation of the analysis, however bad (Watson and Brown,
1975).

3.5 An Inferential Structure for VOI

When acts are treated as events, they may be incorporated as
variables within a probabilistic inference structure. Such a
representation may possess advantages, in terms both of assess-
ment and computation, over the traditional decision tree. One
further condition must be satisfied, however, if these advan-

tages are to be realized.

In Figure 3-2, we assumed that the system designer was eval-
uating a data base, En, and wished to model explicitly only
selected experimental outcomes, z (n. Probabilities for the
modeled states of the world, s, were dependent on the actual
values of z(n). However, unmodeled events might be predictive
for s as well. We now consider the special case in which s
is independent of all unmodeled information events.
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3.5.1 Inference tree representation. If this independence
holds, we can substitute an alternative form of representation
for Figure 3-2, in terms of hierchical inference (HI). (See
special issue of Organizational Behavior and Human Performance,

December, 1973.) Hierarchical inference involves a target

variable, input variables, and intermediate variables. The
object is to obtain a probability distribution over values of
the target variable, given particular values of the input

variables. It may be easier to proceed by assessing proba-

bilistic relationships between input and intermediate variables
and betweer intermediate variables and the target variable;
if so, HI enables us to derive the desired target distribution.

Figure 3-5 depicts the assessment problem in the form of an
"inference tree" (Kelly and Barclay, 1973). Each node corre-
sponds to a variable, and one node is shown below another if
knowledge of the lower variable is required for an inference
about the higher variable. The object of the inference in
Figure 3-6 is to derive a probability distribution over terminal

utility, u, for particular values of E (e.g., En ,Enlor Io) and

zn). This distribution will be marginal with respect to inter-

mediate variables: acts, a, states of the world, s, and the
vector of expected utilities, u*, from an auxiliary tree.

3.5.2 Computation of VOI. Once the distribution on u is ob-
tained, we can proceed to derive the same quantities that

figured in the more traditional Acts as Events evaluation pro-
cedure of Section 3.2 (See Figure 3-2). First, by taking the

expected value of the distribution on u, we get the expected
utility of the subsequent decision, after observing the results

of the experiments in E, but marginal over all outcomes except

Su*(E,z(n)) - EulE,z(n) •.
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Figure 3-6

Inference Tree

z (n)E•E
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SNext, we compute the expected utility of the decision problem

with the information in 3, by taking the expectation with re-
spect to the modeled experimental outcomes, z(n):

U*(E) ( )zlnlE u*(E,z (n).

* Once we have done this for all the relevant values of E, we

can easily compute VOI; e.g.,

EVSI(EnIEnI - u*(En) - u n-

3.5.3 Assessments on u; independence assumptions. What

is distinctive about the inferential approach, of course, is
not the foregoing calculations, but the derivation of the dis-

* tribution on a from Figure 3-6. Two features of the inference

tree ara critical (cf., Kelly and Barclay, 1973): (i) it
contains no closed paths. (The duplication of an input var-

iable, z (n, presents no problems, however.) (ii! the proba-

* bility of any variable, conditional on the variables immediately
below it, is independent of any other variable in the tree.

Given these conditions, we dec6mpose the assessment of proba-

bilities on u as follows:

(1) P(ulE,z (n)) .P (ula,s) P(alE,z (n)) P(sIz (n),

where f is the general summation operator. Equation (1)

allows us to draw a sharp line between two roles of informs-

* tion: (1) as a conditioning event in the system designer's

assessment of probabilities for states of the world, and (2)

as a conditioning event for the system designer's assessment
of probabilities for the decision maker's selection of actions.

0 These roles are distinct because we do not wish to assume the

consistency condition: that the decision maker sqlects actions
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Ly maximizing expected utilities based on probabilities
assessed by the system designer. These probabilities are, how-

ever, still relevant to the evaluation - since states of the
world affect the utility payoff for a given action.

Note that equation (1) depends on certain independence assump-

"*' tions:

P(uIE,z(n) ,a,s) - P(ulas),

P(sIE,z(n),a) = P(s z (n ).

The first of these is implied by condition (ii) above, and is
justified by the decomposition of total utility into the cost
of the experiment and other aspects of utility (Section 2.2.4).

The 7-rnd independence assumption has two parts. The Indepen-
dence . s fd a, conditional on E and z(n), reflects conditions
(i) and (ii), and is by far the more important. Such independence
holds if, as we assumed at the outset of this section, no
unmodeled information events bear on the occurzence of L. in

that case, the assessment of probabilities for s need not take
into account the impact of unmodeled events on action.

The independence of s and E, conditional on z (n), is Zess im-
portant.. This says that whether or not an experiment is in-
cluded in a data base has no effect on the probabilities as-
sessed by the system designer conditional on its (hypothetical)
outcome. (We assume, with Raiffa and Schlaifer, 1961, that
Z contains sufficient information to identify the relevant
experiment in E.) This is based on the assumption that exper-
iments do not affect states of the world (Section 2.2.6). It
is not critical for the HI approach that this be true, however.

Both aspects of equation (1) - the effect of information on

probabilities of actio,*s and on probabilities of states of the
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world - may be further decomposed. The assessment of act
probabilities is decomposed as follows:

This introduces a further independence assumption, in accordance
with condition (ii):

P(aIE,z (n) ,um) - P(aI~u).

We have already described (Section 3.3.2) how act probabilities
may be assigned, by means of the choice equation, as a function
of uM - i.e., the vector of expected utilities for actions com-
puted from an auxiliary model. The required indepenaence is
* thus insured. Turning now to P(u*IE,z(n)), expected utilities
for actions, 9, are computed within the auxilliary model by
standard procedures of rolling back the tree (Section 3.3.1).
This step is therefore deterministic:

P(uIE,z) = v 6 (ui - u*(en ,z (n),a)),

where 6(W) 1, if x = 0
0, otherwise.

The other limb of Figure 3-6, representing the predictive im-
pact of information for states of the world, can be decomposed
as well.. P(slz (n])) can be assessed indirectly, by means of
Bayes' Theorem, in terms of P(z(n)) and P(z(n)Is) 'rct•j., 2.2.4).
Moreover, additional intervening variables may be inst'ted
between s and z (n) if the system designer feels they will im-
prove his assessments, regardless of whether or not such-var-
iables would be known to the decision maker. Indeed, a more
general form of the inference diagram is possible, in which the
experimental outcome variable, z, ranges over different outcomes in

* the righthand and lefthand branches. Thus, the system designer

3-26

0



can decompose his assessments on s in one way and his assessments

on a in quite another. He need not suppose that the decisJon maker

possesses the same information, or prefers the same decomposition,
as he does.

3.6 Unspecified States of the World: Credibility

We have seen how experimental outcomes can be omitted from VOI
analysis by modeling acts as events (Section 3.2). Further
simplification in the use of VOI to evaluate information systems
can be achieved by omitting states of the world. In this section
we discuss the conditions under which an acts as events model

can facilitate this step.

In traditional preposterior analysis, since states of the world
follow the decision node, they may, of course, be integrated out.
It is hardly possible to model explicitly all the events which
could affect utility. To the degree that important factors are
neglected, however, the price of increased simplicity is a more
holistic, and probably less credible, estimate of the expected
utilities for actions. The impact of information on the inferences

of the decision maker and the system designer are no longer modeled
in any detail. The resultant increase in uncertainty about u*(e,z,a)
creates uncertainty in subsequent conclusions. The evaluation of
the decision problem with an experiment, u*(e), is affected since
this is the expectation, with respect to experimental outcomes, of
the maximum expected utility for actions. Similarly, the compu-
tation of value of information (EVSI(e)) becomes less credible.

If one wishes to define "credibility" formally, we may think
of it, following Tani (Section 2.3.2.2), as the "closeness" of
an obtained assessment to the "authentic" value. If a probability
distribution on authentic values is assessed conditionally on the
obtained estimate, "closeness" is inversely related to the variance
of that distribution. The effect of the credibility of a component
assessment (e.g., u*(e,z,a)) on the credibility of VOI (EVSI(e))
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can be computed by the method of decomposed error analysis (DEA)
described in Brown (1968).)

States of the world may be integrated out when acts are modeled
as events, too (Figure 3-7). Once again, we ca•r expect some
reduction in the credibility of estimates for expected utilities

of actions. In some instances, however, the sensitivity of
u*(E) to u*(E,a) will be less in an acts as events model than
in a comparable preposterior model (see the Technical Note

* appended to this report). The reason is that a weighted average

of a set of random variables tends to be more precise than the
maximum.

The exact degree of sensitivity of u*(E) to u*(E,a) depends in a
complex way on the nature of the acts as events model. In
particular, it depends on whether expected utilities are used to
predict actions and, if so, how strong the relationship is.

We can - if we wish - continue to predict the decision maker's

behavior by reference to the expected utilities of acts. It was
shown in Section 3.3.2 how an .auxiliary tree can be used to
compute the u* for that purpose. In this case, the effect onm
credibility of omitting states of the world is somewhat larger,
since the weights for expected utilities (i.e., the act proba-
bilities) are themselves functions of u*. In some instances,

* sensitivity will be much greater than in a comparable preposterior
analysis.

A difference between acts as events and prepooterior analysis,
of course, is that in the former we are not compelled to predict
behavior using expected utilities of acts. Instead of employing
an auxiliary tree ind the choice equation, we may model the

impact of information on action independently - for example:
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Integrating out experimental outcomes and states of the world.
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* by observing actual behavioral patterns in natural or

experimental settings,

* by noting policy guidelines or prescribed doctrines;

e by using descriptive psychological theories of behavior.

If this type of modeling is feasible, the loss of credibility
due to omitting states of the world is reduced (see Technical
Note).

These results are consistent with the following intuitions:

for acts as events, it seems advisable to omit important states

of the world onl1_y if the analytical resources saved are shifted
to some independent method of modeling act probabilities.

Conversely, if there is such an independent method, the value

of modeling states of the world is reduced. We turn now to some

techniques based on the supposition of independent modeling of
act probabilities.

3.7 Utility Swing

A convenient formulation of many VOI problems is in terms of

opportunity loss, or the cost of errors (Section 2.2.3, 2.2.7,

and 2.2.10.1). This approach is particularly appealing when

we have decided not to model states of the world, since direct

assessment of utility differences is only one step beyond direct

assessment of the utilities themselves. It turns out, however,

that an application of the opportunity loss concept within an

acts as events context is not-quite as straightforward as it

might appear.

The natural way to proceed would be as follows, with reference

to the diagram of Figure 3-7:
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EVSI(En) n u*(En) - u*(e 0 )

aEIL u*(En,aE E u*(eo*ao}
= EaInE)" Ea 0;eo

=Eaoe EaE [u*(E ,aE) -u(ea

where we have used aE and a to refer to the informed and

uninformed acts, respectively. With this approach we need to
assess probabilities over the options both for the decision

maker's initial preferences, ao, and for his choices, aE,

after observing the data base contents, En. The quantity in
brackets represents the utility swing for a particular combinaticn

* |of initial preference and informed choice, and may be assessed

directly. (Note that we could also define opportunity loss in
terins of perfect information and let:

P EVSI(En) = i*(eO) -

C [uk(PI) - u*(eo)] - (u*(PI) - u*(En)]

* (see Section 2.2.10.1). We have chosen instead to regard "errors"
as differences made in behavior by ignorance of a particular data

base, En, and not by lack of "perfect knowledge". However,

parallel considerations would apply to the alternative treatment.)

To see the problems that arise in the context of acts as events,
note that with the standard opportunity loss treatment, when

information does not affect choice, utility swing is zero

(Section 2.2.7). The crucial intuition underlying our assessments
is that we are evaluating the costs of errors, what we would

have gained by switching responses. On account of our assumption

that experiments do not affect states of the world (Section 2.2.6),

-P we would therefore expect to find that:
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u* (E n a E)a u* (e oa)

when am aE 0*

This however, is not the c~ase with acts as events. Utility

assessments are conditional upon the actions performed, and upon

the amount of knowledge one supposes to have informed the action

(Sections 2.3.2.2, 3.3.4). Thus, even when the decision based

on E n is the same as would~ have been taken without it, we assess:I

u*(E n a,) > u(oa~

because the fact that the action is ch .osen on the basis of knowledge

gives us more information about utility than the mere fact that

it is chosen.

Fortunately, there is a formulation in terms of opportunity loss

w~hich fits the intuition that we should be concerned with errors.

We can repartition the spac.e of outcomes so as to establish the

desired equality of expected utilities. All that is required is

*that we insert a chance node after the uninformed act, a which

corresponds, hypothetically, to what the informed act, a., would

have been (Figure 3-8).

*The expected utility assessment, u*(eo,ao,aB)E is now conditioned

on the hypothesis that, in this situation, if the decision maker

had known E n he would have chosen a E. Thus, if the uninformed

decision maker makes the same choice in that situation, he gets

* the siame utility. The effect of this partitioning is that:

u*(ejaojaE)iu*(E na) > u*(e 0a0
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when a-E ao0 and

u*(eo,aopaE) < u*(e 0 ,a 0 )

when aE # a 0 i.e., expected utility is adjusted downward when
we know that the informed choice would have been different.

We can now reformulate the acts as events model in terms of

opportunity, loss:

EVSI(En) - u*(En) - u*(eO0
u*(n -E} E u,(eo,aoa-

E aEIEn u*(En a E ao le 0 EaEleo,ao *

And, assuming that the informed decision maker knows what his
initial choice would have been, i.e., P(aEleo,ao) - P(aE) 1 P(aEIEn),
we have:

EVSI(En) =EaoleO EaEEn [u*(E n,aE) - u*(e 0 ,ao,aE)E.

* The quantity in brackets can be interpreted legitimately in terms
of opportunity loss. In effect, it compares ao0 and aE in the same
situation. It corresponds to what the decision maker imagines
he would pay to be allowed to change his mind if, after chosing

Sao, he-observes En, and as a result now prefers aE . He will, of

course, pay nothing to retract his decision if En does not cause

his preference to shift.

* The opportunity loss formulation is convenient, as noted in

Section 2.2.10.1, when there is an additive component of utility
common to all options a. Moreover, the required assessments
seem quite natural. Still, it should be noted that in the acts
as events context, the number of required utility swing assess-
ments is actually larger (the square of number of. options) than
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the number of utility assessments that would ordinarily be needed

(twice the number of options). Even when the uninformed choice,

ao, is known with certainty, assessments are required for each

possible switch from ao, i.e., for each option.

3.8 Unspecified Options

Thus far, every VOI technique which we have reviewed or proposed

has required that the options confronting the decision maker

be specified in advance. This is a quite unreasonable demand
when information systems are expected to perform in changing and

largely unpredictable environments. It is still less reasonable
when some of the information to be evaluated provides assistance

Ain identifying options. Finally, we can expect enormous economy
of effort by framing a VOI analysis with unspecified options.

A natural starting point is the opportunity loss idea in the

context of acts as events (Section 3.7). We now assume that the

utility swing,

U(En) - u*(En,aE) - u*(eoao,aoE),

* is (roughly) constant for all aE # a0. Then we have:

EVSI(En) - E EaEjEn aE~a0 U(En)

- U(En) o E P(aoleo)P(aEiEn)
o Eca Jn

" U(En) o aE ao P(ao&aEleo),

again assuming that P(aEIEn) - P(aElao,eo). Thus,

EVSI(En) U(En) • S(En)
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where S(En) is the probability that the decision maker would switch

options, if he had knowledge of En, and U(En) is the expected shift in

utility given that he does switch options as a result of En.

Both U(En ) and S(En ) can be directly assessed, with a fair

degree of naturalness, in a variety of circumstances. When this
is possible, it is unnecessary to spell out the options between
which the decision maker might switch. It is only required to
assess the likelihood that the information will cause some change
or other, and the expected benefit.

3.9 Decomposing Shift Probabilities: Information Value and
Usability

F6r many purposes of C2 system assessment it is desirable to

distinguish features relating to "pure informational value" from

those relating to "usability". Unfortunately, efforts to categorize
evaluative criteria in such terms have seldom been rigorous or
formally-justified (see Section 2.1.2). We have suggested one

approach to this problem based on an auxiliary decision tree and

the choice equation (Section 3.4.1). We now outline another,
much simpler method which flows from the opportunity loss conception.

The essential idea is to decompose the probability that the

decision maker will change options due to En into two preconditions:

e the information content of En would suggest a change
in options to an "optimal" decision maker;

* an actual user would change to the indicated option

* given that an optimal user would.

.The suggested decomposition is summarized in Figure 3-9. The

infbrmation system would cause an optimal decision maker to change
6 fr6m his initial preference, aO, to a different choice, a1,

with probability K. Given that an optimal decision maker changes,
the actual user will switch his preference, aE, to the indicated

option (or to one nearly as good) with probability K. If he does
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Figure 3-9

Probability tree for information value and usability.
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switch, his swing in expected utility is U, as defined above. If,

on the other hand, he remains at his initial preference, or

switches without apparent reference to the information system

content, his expected utility swing is zero.

If the information system content suggests tb an optimal user

that he stay with his initial choice, ao, we assume - for simplicity -

that the actual user will remain at a with probability one. It

seems unlikely that the decision maker would very often be deterred

from his chosen path by the illegibility of a confirming information

display, or even by a fallacious interpretation of it.

We thus have a "multiattribute" decomposition of S(E n) in terms

of two parameters: information value, R(En), and usability, K(En):

S(En) = R(En) • K(E n).

ý1 This MAU model is not ad hoc (see Section 2.1.2). The multi-

plicative combination rule is a direct implication of our

probabilistic assumptions; and the interpretation of R and K

as probabilities provides a framework in which their meaning can

be clarified and communicated.

An important part of such clarification is the definition of

"optimal decision maker" (ODM). First, it should be clear that

ODM is not omniscient. We attribute to him roughly the same

substantive knowledge to be expected in the actual user of the

information system. Otherwise, of course, the information provided

by the system could never cause him to change his mind.

On the other hand, we assume that ODM is consistent (Section 2.3.11.

-This means that he rationally incorporates new information into

his belief structure: he assesses probabilities for states of the

* world conditional on the information, assesses utilities for each
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combination of act and state of the world, and selects an action

by maximizing expected utility. A second assumption about ODM

is that, in doing so, he is undeterred by such factors as fatigue,

workload, inattention, failures of memory, or illegible displays.

R is the probability that ODM, so equipped, will switch options

as a result of the provided information. (1-K) measures the likeli-

hood that inconsistency due to performance factors (fatigue, etc.)

or errors of knowledge (e.g., the use of an incorrect decision

rule) will negate this potential switch in actual.practice.I
3.10 Application to VOA

When inference or decision aids are provided by an information

system, they may improve the "usability" of other information

items. They may reduce the effects of workload and fatigue by

automating certain functions, and they may correct errors of

knowledge by helping to draw the implications of information

for belief and action.

Decision aids, however, may possess information value in their

own right, considered in isolation from other elements of the

data base. Note that although ODM is assumed to be a consistent

probability assessor, he is not necessarily an authentic one
(Tani 1978; Section 2.3.3.2). That is, his assessments need not
fully incorporate the relevant knowledge which he already possesses-

and which, if he had "infinite time" for reflection, he would bring

to bear on the assessments. A decision aid can cause an optimal

decision maker, so defined, to change his mind. It can stimulate

the generation of available options; and it can improve his

assessment of probabilities by decomposing them in more natural

.ways, that draw on more of his knowledge. His judgments are

consistent conditional on any given knowledge set.

Since 0DM is consistent, he will evaluate the output of a decision
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aid as "information", assessing its validity in the context of

other beliefs, and acting accordingly (Nickerson and Boyd, 1980;

Section 2.3.3.3). Note that a- the option indicated as optimal
by this process - need not be the option explicitly recommended

by the decision aid.

Actual decision makers, of course, may either fail to appreciate

a good decision aid or act unquestioningly in accordance with a

bad one (cf., Watson and Brown, 1975; Section 2.3.3.1). K, there-

fore, measures the "usability" of the decision aid - the extent to

which its impact on behavior reflects a rational evaluative process

on the part of the user.

The proposed technique satisfies two desiderata for the evaluation

of decision analysis, discussed in Section 2.3.2:

* It does not assume that an actual decision maker is

perfectly consistent in the probability judgments used
to evaluate the analysis.

* It does not require the prior specification of options

available to the decision maker.

Thus, in addition to being simpler than current approaches, it is

applicable to decision aids which assist in the modeling of options.
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4.0 INFORMATION EVALUATION FOR SYSTEM USERS

4.1 "Intelligent" Computer Aids for Information Selection

In this chapter we turn to the second level of information

selection described in the Introduction: the "user dialogue".Certainly one of the most important characteristics of future C3I1

systems will be the ability to perform proactively and intelligently

in the on-line provision of information to decision makers. Users

should not have to traverse complex sequences of computer-generated
menus or cope with complex thesauri of computer-recognizable

terms in order to tell the system what information is needed.

To whatever extent possible, the system itself should quickly
determine the information needs of the particular use__r, and select

optimal methods of data presentation based upon its knowledge of
human factors and its internal determination of the expected
value of information.

While system designers must consider the broad range of scenarios

in which a system is to function, our concern shifts now to a

particular user in a particular situation. Even though, in a

* sense, the user has less to consider, the constraints on the

complexity of the user dialogue are no less severe than for the

designer dialogue. The user of a C 2 system will be operating under

heavy pressures of time and cognitive load, particularly in

* situations of combat. A determination of the information that

is of greatest value must take place as quickly and effortlessly

as possible. We may add that elaborate and complex programs

to perform a full VOI analysis would not appear to be practicable

* adjuncts of data-base systems, given the present state of the

art in computer aids. I
In our discussion of the user dialogue, we will draw upon concepts

* developed in Chapter Three, particularly Sections 3.7 and 3.8, for

a method which may prove both practicable and effective.
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The method is based on the fundamental concept that information

has a value only insofar as it causes a decision to be changed.

In essence, then, we require the computer to ask only how likely

data in a given category are to cause a switch in the preferred
options, together with an estimate of how valuable such a switch

would be. The data that are then presented to the user will be

those which maximize the product of the probability of a switch

and the expectation of the shift in utility. However, a direct

assessment of these entities may not be possible for the decision

maker (DM) without some more solid background against which to

base these assessments. Thus, the procedure we advocate provides
for a certain initial structuring of the decision problem. There

are, however, many different levels of effort and complexity at
which the assessments could be carried out. We shall indicate

the advantages and disadvantages of the various levels of
decomposition.

4.2 Outline of Proposed Program

The basic idea of the approach is shown in diagramatic form in

Figure 4-1. In Step 1, the computer asks the DM to make a list of

all those options that the DM considers to be potentially
selectable. The purpose of this is to make the questioning in

later steps less of an abstract exercise. The DM is then asked to

select that option which he considers to be the best, in the
absence of any information that might be provided by the data

base.

In Step 2, the DM is asked by the computer to think about which

areas of major uncertainty the DM would like most to have resolved
in order to feel more happy about the option selected. It will be

emphasized to the DM that consideration should be centered upon

those uncertainties where potentially available information might
cause the preferred option to switch. Thus, even were the DM
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particularly worried about a certain area of uncertainty, if

he did not-feel that any potential resolution of that

uncertainty would cause the preferred option to be switched, then

the information would have (at that point and time) no value.

Each individual type of uncertainty may, or may not, be explicitly
linked via the computer to the relevant decision options. It is

quite conceivable that, after producing such a list of
uncertainties, the DM will want to return to Step 1 in order to

include one or more previously unconsidered options. Such an

iterative procedure should, of course, be built into the decision

aid.

In Step 3, the computer will need to elicit from the DM the

* probabilities that the preferred option would be switched given

perfect information on each of the uncertainties listed in Step 2

above. In Step 4, the computer would need to elicit the expected

change in the value of the decision, given a switch due to perfect

information, for each of the uncertainties. These changes in
utility would perhaps be best assessed on a 0 to 100 scale, where

0 indicates the worst possible outcome and 100 represents the

best possible outcome. After Steps 3 and 4, it will be possible

to decide which uncertainty it is of most value to resolve, by

multiplying together the probability of a switch given that

resolution, and the expected change in utility from a switch. The

most valuable is obtained by finding the uncertainty which maximizes

this product.

4.3 Levels of Analysis

The steps described in the last paragraph are the heart of the

process. However, many different levels of effort could potentially

be programmed into the decision aid. We now indicate, in increasing

order of effort, some of the potentially available levels of

decision aid:
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9 The computer could simply ask directly of the DM which

uncertainty would be of the most value to have resolved.

Such a direct assessment would not, we suspect, provide

much useful aid to the DM.

* One could assume that the expected utility from a

switch in the preferred option was approximately the same

over all uncertainties and simply ask the DM which

uncertainty would, upon resolution, provide the greatest

probability of a switch in options. That uncertainty

would then be targeted as the one concerning which data

should be presented. It will be noted that this approach

does not require the assessment of numeiical values for

the probability of a switch--merely the elicitation of a

maximal element. The degree of approximation inherent in

the initial assumption of equi-value switches will, of

course, depend on the given context. in certain

situations, this approach may indeed be the best because

of its simplicity.

"* The analysis could be performed as indicated in the

previous section, by assessing both the probability

of a switch and the expected utility of a switch for

each uncertainty. The assessment of the probabilities

of switching could be done at a more or less refined

level and similarly the expected switches in utility,

although we assume that simple, direct assessments on

a 0 to 100 scale (perhaps via ratio judgments) are the i
most practicable.

"* One could build a full multiattribute utility (MAU) model

instead of Step 4. The DM would then be required to

indicate how much gain (or loss) on each of various

* key criteria could be expected from the potential switches

in preferred options.
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* The assessments could be conditional upon which parti-

cular switch in preferred option was made. Thus, the

computer would assess from the DM the probability of

switching to each of the options listed in Step 1 and

then assess the expected switch in utility individually

for each possible option.

* The greatest degree of complexity would be to build a full

decision-analytic model of the problem and to perform a

complete VOI calculation thereon. However, as indicated

at the beginning of this section, such a procedure is not

at present to be contemplated.

4.4 Presentation of Data

At this stage, the computer will have gained from the DM knowledge

* of the area of uncertainty to which presented data should refer.

It is now necessary to decide which individual items of data in

fact pertain to this uncertainty and also to determine a

prioritization of all such items of data. It appears to be

necessary that some pre-sorting of the items in the data base

should have been carried out prior to this analysis'. At the

simplest level, one could simply associate with each item of data

several key words. A list of key words could then be presented to

* the DM, on whom would fall the chore of linking the selected area

of uncertainty with presented key words. This, of course, would

be the most basic form of information selection, and one upon

which we believe it.to be fairly easy to improve, given a certain

amount of ingenuity and pre-modeling effort.

The key to such more sophisticated methods of choosing data is

that, for a given data base, the types of uncertainty that may be

faced by decision makers will be finite and of small number.
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Pre-modeling efforts are required to have associated with each

item of data in the data base an indication of which type of

uncertainty is addressed by that item. This indication could be

either in a binary yes or no form, or, in a more sophisticated

version, by a number between, say, 0 and 10, indicating the degree

of relevance of that information to each type of uncertainty.

Once the important uncertainty had been isolated by Steps 1

through 5, any of a variety of algorithms could be used in order to

decide which items of data should be presented to DM. As an

-* example, we have the following%

e If the binary categorization has been used, the computer
could simply present all those items which were classified
as being relevant to the given uncertainty.

* If a more complete numerical scale was used, the computer
could present items in order of their relevance to that
given area of uncertainty.

* The statistical technique of cluster analysis could be
used to find items of data that were similar in
characteristics to a given prototype piece of data. This
prototype could be an item of data impinging purely upon
the selected area of uncertainty, though it could also be
a more sophisticated version given to the computer by the
DM, i.e., the computer might ask the DM, after having
displayed the area of uncertainty of greatest importance,
to feed in a "relevance profile" which the DM considered
to be the most appropriate type of data that could be
presented at that time.

* A more sophisticated form ot cluster analysis could be
used, based either on stochastic clustering or fuzzy
clustering (see Appendix) which would permit the computer
to "know" to what degree the given data element belonged
to the relevant cluster. This would again provide for a
prioritization of the presentation to the DM.

S
After presentation to the user of each item of data, the computer

should present to the DM the possibility of going back to stage

one. In this way, the DM would be able to add to his previous

i list of options any new ones that had occurred to him after
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presentation of the data and also any other major uncertainties
which now were worrying him. A new preferred option could be
selected as required, new probabilities and utilities could be
assessed, and, thus, a new primary area of uncertainty could be
distinguished. The procedure would thus be iterative, as
indicated in Figure 4-1 until the decision maker either felt
sufficiently confident of the preferred option, or until available
time and resources had run out.

B
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5.0 TECHNICAL NOTE: CREDIBILITY

In this note we show how the credibility of the evaluation

of a decision problem with information, u*(E), depends on the

credibility of the assessments for the expected utilities of

actions (Section 3.6). We will compare two versions of acts as

events in this respect: one, using expected utilities to

estimate probabilities for actions; the other, estimating those

probabilities independently. Preposterior analysis will be used

as a benchmark. The ultimate purpose is to assess the consequences

of omitting states of the world in these types of models.

We use the choice equation to derive:

u*(E) = £ P(aIE) u*(E,a)
a

U* .c
= Z m. (u*,i + Ai)

i u* jc 1
Sm,

It is necessary to note several simplifications. First, we treat

u*(E,a) as u* * plus an adjustment A. A is zero for preposterior

analysis (c-). For acts as events it is always positive, and may

vary with u* and c. In this analysis we will ignore A - in
m

effect assuming that it is not very sensitive to the value of
u*. Nonetheless, for this reason we may underestimate the depen-

dence of the variance V(u*(E)) on V(u*) for acts as events.

Second, we are ignoring modeled information events, since the effect

of uncertainty in the assessments of P(zIE) is not our present

concern, and such aft effect would be the same for acts as events

and for preposterior analysis when they model the same outcomes.

Finally, we assume that our uncertainty concerning the "authentic"

values of the u*,i, given the assessed ones, is constant across

acts.
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71On these assumptions, using the method of Brown (1968), and
U* Cwriting Pk for m ,k we get:

2 -2
Vlu*IE)) - Vlu*)Z .L} + H.O.T.

- u)ZC 1 + P c U -i E *+
u{' M'3 i ji H.O.T.

By ignoring the higher interactions of the u* we do not
M

affect the dependence of V(u*(E)) on V(u*).

According to this equation,

V(u*(E)) a K(c)V(u*).l'I

r'or traditional preposterior aiaiysis our uncertainty concerning

the decision problem with E is the same as our uncertainty

about the alternative for which expected utility is maximum:

V(u*(E)) = V~u*).

Por acts as events, K(c) may be greater or less than 1 depending
on c, the number of options, and the values of the u*. Thus, when

m
c equals zero, the rate at which V(u*(E)) increases due to increases

in V(u*) is less, in comparison to preposterior analysis:

V(u*(E)) - V(u*)EP 2 - V(u*)/q

where q is the number of options (and Pi 1 /q since c - 0).
Here, K(O) = 1/q.
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On the other hand, for c - 1,

V(u*(E)) = V(u*I).[2Pi - EP 2] 2

2 2- vlu*).q. Epi22
m i

; i2 has its minimum value (1/q) when each Pi equals l/q, i.e.,
when the umi are equal; it has its maximum value (1) when only

a single response has expected utility not equal to zero. Thus,

q q(EPi 2 ) 2 i>/q.
i

Hence, K(l) may be considerably greater than 1 when options have

very disparate expected utilities.

We turn now to the independent modeling of act probabilities,

in an acts as events model. In this case,

V(u*(E)) = V(u*) P2 + V(pi) u* 2 H..T.

whee 1 PaiEm Agin iP

where P P(aIE). Again, 1P 2 is minimum for equiprobable

acts and maximum for exclusive preference. Thus,

Si >->P. _> l/q.
1

With independent modeling of act probabilities, therefore,

the dependence of V(u*(E)) on V-(u*) is reduced in comparison to
acts as events with c - 1 - and, subject to the qualification

concerning the adjustment A, may be considerably less than ,in

the preposterior analysis.

I
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APPENDIX

FUZZY SETS AND INFORMATION SYSTEMS

INTRODUCTION

Fuzzy set theory is a relatively new discipline. The seminal
paper was written by Zadeh in 1965, and since then a great deal of
time and effort has been spent developing the concepts. In this

section we shall present an overview of the foundations of the
subject, and show how their application could be of potential
value in the design and use of information systems.

"An Overview of the Fundamentals of the Fuzzy Set Theory

The basic aim of fuzzy set theory is to handle imprecision. To

overcome the need for precision, Zadeh (1965) argued the need for
a new, fuzzy approach to the analysis of systems, and to this end
he introduced his fuzzy set theory and the related concept of

fuzzy logic. These ideas are compelling enough to have stimulated
considerable study over the last thirteen years. In this section
we present only a very quick treatment of the theory. For further

detail see Watson, Weiss and Donnell (1979), Freeling (1979, 1980)

or any of Zadeh's own papers.

Our treatment follows that of Watson et al. The central concept
of fuzzy set theory is the membership function, which represents
numerically the degree to which an element belongs to a set. This
function takes on values between 0 and 1, and it is an extension

of the idea of a characteristic function for a set. The
membership function is assessed subjectively in any instance,

small values representing a low degree of membership, and high
values representing a high degree of membership. Freeling (1980a)
discusses further the question of elicitation.

" " " [ {l I



The calculus of fuzzy sets is based on three reasonable propo-
tions which numbers of this type ought to satisfy:

(a) The degree to which a belongs to both A and B

is equal to the smaller of the individual de-
grees of membership.

i.e., fA%8(a) = min(NA(a),v B(a))

(using an obvious notation)

(b) The degree to which a belongs either to A or
to B is equal to the larger of the individual
degrees of membership.

i.e., UB(a) = max(PA(a), B(a))

(c) The degree to which a belongs to (not A) is

one minus the degree to which a belongs to A.

i.e., UR(a) = 1 - VA(a).

Many possible uses for these concepts and this calculus in sys-

tems analysis have been suggested. One particular idea is to
extend the notion of a function to allow fuzzy inputs and pro-

duce fuzzy outputs. To deduce the "fuzz" on the output given

the "fuzz" on the inputs, we use the relationships above in the

following way:

Let jii(Xi) be the degree to which xi belongs to the possible
set of numbers for the ith input variable, and u 0 (y) be the

degree to which y belongs to the set of possible numbers for

the output variable. Then application of the rules above gives

UO (y) Max [Min(u1(Xl),U2(x2),...,n(xn)]

y=f(x)



The idea of Equation (1) is that for each "possible" set of values

of the inputs (i.e., for all sets of values having non-zero
membership functions) the output value is calculated and then a
membership grade is given to this output value, based on the

membership functions of the inputs.

With this basic calculus numerous researchers have shown that

imprecision can be handled in a useful and logically consistent
manner. In particular, just as ordinary set theory forms the

basis for reasoning via logic; fuzzy set theory forms the basis

for approximate reasoning, via a fuzzy logic.

The Use of Fuzzy Sets in Managing Expert Information Systems

The main advantages of using fuzzy set theory and fuzzy logic when

designing an information system lies in the fact that we can allow

fuzzy, or approximate, input from the user. Although it is

possible that stochastic, or probability, models might also be

appropriate in this situation, using fuzzy logic is faster

computationally and thus appears to offer a practicable

intelligent system. We have not as vet developed these

ideas very far and thus we shall present only an overview

of the sorts of ideas that miqht be worth researching further.

It should be noted that other researchers in the field have

already begun using these concepts and claim great successes

for their work. Such literature as may have been generated,

however, does not appear to have been published. The research

thus far has been reported only at international congresses, for

example the Congress on Cybernetics and Systems in Acapulco,

* Mexico, December 12 through 17, 1980. The ideas presented in

this section, however, do not borrow from those of other
researchers, since unfortunately we have not been able to study
their work.



An attractive and fairly simple idea would be to extend the use of
key words. In order to achieve this, one could envisage
associating with each item a value indicating its degree of
membership in the fuzzy set of data satisfying a given key word.

Such a value could be preprogrammed into the information phase.
Then one can envisage using a fuzzy extension of cluster analysis.

This mathematical technique has been studied, for example, by
Bezdec, and several good results have been reported with it both

in terms of intuitiveness of the results and simplicity of the

calculation. The different data could be grouped together in

fuzzy clusters relating to their zone of applicability and then
either the names of the fuzzy clusters could be presented to the
data base user, or perhaps the prototype member of the fuzzy

clusters could be presented to the data base user. The user could
then state which fuzzy clusters he would be interested in viewing.
Alternatively, the user could present a prototype to the system

which would then present to the user those items of data which
were "near" to the prototype, in terms of the fuzzy clustering
algorithm. Parsimony of data presentation could be incorporated

into the process by allowing only data which had membership
greater than a given threshold value in the relevant fuzzy
cluster to be presented. Should further data be requested by the
user one could then lower the threshhold value.

Fuzzy logic is of great potential when contemplating the design of

interactive data bases because the approximate concepts in which
human beings typically think can be explicitly modeled. For

example, the system would understand what was meant by information
that was "sort of relevant to Russian submarine manuevers." With

such concepts, a quick and highly interactive search of an
unfamiliar data base could be conducted by any user.

It should be realized that the concepts discussed above do not

draw oh the decision theoretic idea of value of information. Thus



we have done no more than whet the readers appetite for
F.ý investigating such use of fuzzy sets further.

Fuzzy Decision Analysis and the Value of Coherence

"We follow Watson et al. (1979) and Freeling (1980a) and impute

from the imprecision in the inputs to a decision model, what theI imprecision in the conclusions should be. We assume that the
structure of a decision problem is clear-cut, but that the input
probabilities and utilities are known only fuzzily

(approximately). (We realize that in many decision analyses the
appropriate structure is only fuzzily known, but we restrict
attention here to problems where this is not the case).

The inputs, then, are fuzzy numbers, as is the output (the expected
utility). An example of a fu-zy input and output are input

functions shown in Exhibit l(b) and (c). Note that an ordinary
"crisp" probability (1(a)) can have only one value; a fuzzy
probability has many possibilities. Such fuzziness may arise
because of lack of time in assessments i.e., at a first pass we
ask only for approximate values; or because the DM has no more
than a vague, or fuzzy, notion in his head of "probability." This

motivation is further discussed in Freeling (1980b). We take the
view that we may model approximately the results of a more
detailed analysis, by assuming that the analysis will increase the
DM's coherence by reducing his initial fuzz on the inputs. In

particular, we introduce the concept of perfect coherence as the
situation when all inputs (and hence outputs) are crisp. In a
manner analogous to that used in a normal decision analysis to
calculate value of perfect information (VOPI), we may calculate
the value of such perfect coherence, before performing the

analysis. This, then, may be considered an upper bound on the
value of the analysis to the DM--how much he should be willing to
pay to achieve increased coherence by decision analysis. One may
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also extend the concept of VOPI to this fuzzy analysis. For the
4 simple decision tree of Exhibit 2, where only the probability p

is fuzzy, as shown in (b), the (fuzzy) VOPC and VOPI are shown in
(c). It can also be shown that, in a very natural sense, the value
of perfect information is always greater than the value of perfect
coherence. This satisfying and intuitive result leads us to hope
that this approach to the valuation of analysis may prove more
fruitful, at least in some situations, than the more traditional
ones discussed elsewhere in this report.

We have thus shown that we can, in a logically consistent manner,
gain an approximate idea of the value of analysis by asking only
for approximate inputs. Such a calculation could, we believe, be

fairly simply incorporated into an interactive data base, both to
0 calculate the value of a decision aiding device, and also an

approximate value of different types of information.
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